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Abstract

During the grant period, we have developed the high order methods, namely spectral
methods, WENO-Z finite difference methods and the Hybrid spectral-WENO finite
difference scheme for supersonic reactive and non-reactive flows. High order methods
are needed in these kind of problems because the numerical solutions contain small
scales that are important in the simulations of turbulence in interface instability and
combustion in modeling combustors. Also since most of the relevant problems are not
steady, long term integrations have to be carried out. It is well known that high order
accuracy methods are needed in this situation.

We consider the problem of supersonic reactive flow in recessed cavities and simulate
it by spectral multidomain techniques. This is important as a flameholder mechanism
in scramjets. We have developed a multi-domain spectral method with stable and
conservative penalty interface conditions for the numerical simulation of supersonic
reactive recessed cavity flows with homogeneous grid.

The multi-domain hybrid Spectral-WENO finite difference method is introduced for
the numerical solution of two dimensional nonlinear hyperbolic systems in a Cartesian
physical domain which is partitioned into a grid of rectangular subdomains. The
main idea of the Hybrid scheme is to conjugate the spectral and WENO methods
for solving problems with shock or high gradients such that the scheme adapts its
solver spatially and temporally depending on the smoothness of the solution in a

1





given subdomain. Built as a multi-domain method, an adaptive algorithm is used to
keep the solutions parts exhibiting high gradients and discontinuities always inside
WENO subdomains while the smooth parts of the solution are kept inside a spectral
one, avoiding oscillations related to the well-known Gibbs phenomenon and increasing
the numerical efficiency of the overall scheme. A higher order version of the multi-
resolution analysis proposed by Harten is used to determine the smoothness of the
solution in each subdomain. The Hybrid method is applied to the two-dimensional
Shock-Vortex Interaction and the Richtmyer-Meshkov Instability (RMI) problems.

We also have developed a different approach in attempting to get more meaningful
results is to model statistically those scales that can not be resolved. Methods for
modeling those scales are being developed and applied. Numerical issues, as boundary
conditions, are being addressed and new boundary procedure is being presented.

1 A weighted multi-domain spectral penalty method with inhomogeneous
grid for supersonic injective cavity flows

Spectral methods have been actively used in the computational fluid dynamics com-
munity in the last decades due to the merit of high order accuracy maintained for
long time integration. Spectral methods also have been applied to highly complex
fluid systems and have been proved to yield accurate solutions even with the stiff or
discontinuous spatial gradients. These systems include the supersonic shock bubble
interactions [12], the supersonic cavity flows [11], and etc. The difficulty of implement-
ing the spectral method to these complex fluid systems is to deal with the stiff or
discontinuous spatial gradients successfully. The discontinuous solution is commonly
found in most high speed fluid mechanical systems. The spectral approximation of
such solutions yields spurious oscillations near the discontinuity, known as the Gibbs
phenomenon. These Gibbs oscillations destroy both the accuracy and stability in gen-
eral. The essential methodology to deal with such oscillations in the spectral solution
is the spectral viscosity or filtering methods [5,16,20,23]. The filtering which is math-
ematically equivalent to the spectral viscosity method but practically more efficient,
is used to stabilize the flow fields over the time integration. The filtering reduces the
high order oscillations by attenuating the high modes in the solution in a smooth
manner. The filtering method can be applied either globally or locally. By applying
the filtering locally more accurate solution is obtained in the smooth region and the
spurious oscillations in the neighborhood of the discontinuity is considerably reduced.
Thus it is desirable to separate the locally non-smooth regions from the global smooth
region. A multi-domain spectral method has been developed to address this problem

2



[8,11,13,14,17–19]. Once the physical domain is split into multiple subdomains, the
proper interface conditions should be imposed at the domain interfaces. The simplest
condition is obtained using the averaging method. With the averaging method, the
flow field at the domain interface is given by the average of the two adjacent solu-
tions across the interface. Thus the continuity of the solution is ensured with the
averaging method. Although this method is simple and efficient to be implemented,
it may cause the generation of nonphysical solutions at the interface if the two ad-
jacent subdomains have different order of approximation or different domain length,
i.e. if the grid system is inhomogeneous. We define the grid inhomogeneity as the grid
configuration such that the grid resolutions between the adjacent subdomains across
the domain interface are different. Such difference can be obtained by having each
domain have different order of polynomials or different physical domain length. If the
distribution of the subdomain grids is inhomogeneous, the stable interface conditions
derived for the homogeneous grid system are not enough and one needs to find the
conditions with which the spatial inhomogeneity can be addressed properly.

At the domain interface of two adjacent subdomains which have the degree of poly-
nomials, N1 and N2 in x−direction, the ratio of the grid spacing ∆x1 to ∆x2 is
approximately given by

∆x2

∆x1
=

∆II

∆I
·
N2

1

N2
2

, (1)

where ∆I and ∆II are the domain lengths of the two subdomains. If the grid spacing
ratio ∆x2

∆x1
is different and far from unity, we consider it as the inhomogeneous grid. If

∆x2

∆x1
= 1, i.e. if the grid is homogeneous, the averaging method can play an efficient

role as a stable interface condition. However, if the ratio is far from unity, the simple
averaging interface condition can cause the growth at the domain interface. In the real
computation, the values of N1, N2 and ∆I , ∆II are chosen such that ∆x2

∆x1
becomes close

to unity but in general ∆x2

∆x1
6= 1. The current work centers around the development

of the method dealing with the solution in inhomogeneous grid, i.e. when ∆x2

∆x1
6= 1.

In [11], we performed a 2D direct numerical simulation (DNS) of the recessed cavity
with the multi-domain spectral penalty method under the condition that the grid is
homogeneous. For the homogeneous grid system, the size and the number of collo-
cation points in each subdomain are the same in each dimension. In this study, we
extend the previous work to the inhomogeneous grid system to consider the injector-
cavity system with the local hydrogen fuel injector. The crucial part of the DNS of
the injector-cavity system is to resolve the hydrogen jet injector without causing any
instability or nonphysical growing modes at the domain interfaces. The ratio of the
injector to the cavity length scale is about O(10−1). We use a smaller subdomain
with higher order polynomials to resolve the narrow jet. In Figure 1 the local do-
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main configuration is given for the cavity flameholder with (left figure) and without
(right figure) the injector. The local domain configuration shown in the right figure
is the typical domain system used in [11] for which grid system is homogeneous. The
grid system in the left figure is inhomogeneous as the local injector is in the narrow
domain. In [11], the stability analysis has been done with the assumption that each
subdomain has the same length but can have different polynomial orders. With differ-
ent polynomial orders, the stability is still maintained. In this work, we further show
that the stability can be also maintained with the different domain length. For the
2D DNS, we use the grid inhomogeneity mainly due to the different domain length
with the same polynomial order in each domain.

The stability conditions can be derived with the inhomogeneous grid, but these are
only necessary conditions. Consequently there can be a non-reflecting mode at the do-
main interface which can yield a growth in time. A weighted spectral penalty method
is proposed in order to minimize such nonphysical reflecting modes at the inhomo-
geneous grid interfaces. We note that in [8] the multidomain spectral method has
been also used for the localized incompressible stratified turbulence flows in which the
strong adaptive averaging method has been used with the spectral filtering technique.
In our work, we observe that the averaging method with the filtering technique does
not yield a smooth profile across the inhomogeneous grid interface for the compress-
ible supersonic flows. This is due to the fact that the averaging does not guarantee the
stability for the inhomogeneous grid as shown in the following section. The character-
istic decomposition type interface conditions also fail to provide the smooth solution
across the inhomogeneous grid interfaces. The major developments of the current
work are as follows. 1) A generalized conservative and stable penalty conditions are
derived for the inhomogeneous grid. 2) The weighted spectral penalty method is de-
veloped to minimize the non-physical growth modes at the inhomogeneous domain
interfaces.

Using the proposed weighted penalty method, we carry out the 2D DNS of the
injector-cavity system with various recessed angles. Cavity is an efficient flame-holder
of scramjet engine as it generates the self-sustained recirculation region. The hot
radicals from the chemical reactions residing in the recirculation region reduce the
induction time and consequently maintain the auto-ignition. For the continuous auto-
ignition and better fuel efficiency, such recirculation region should be stable for long
time. In addition to the recirculation, the self-sustained acoustic oscillations bouncing
back and forth inside cavity disturb the recirculation generating pressure fluctuations.
The geometry of cavity is an important parameter for maintaining a stable recircu-
lation while reducing the pressure oscillations. It is shown in [11] that the recessed
cavity flameholder reduces the pressure fluctuations inside cavity more considerably
than the normal wall cavity. In this research we verify qualitatively that the recessed
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cavity increases the stability of the recirculation and reduces the pressure fluctuations
inside the recessed cavity with the hydrogen injector.

x

y

0.05 0.1 0.15-0.02

-0.01

0

0.01

0.02

0.03

Fig. 1. Left: Local domain configuration of the normal injector-cavity flame-holder. Right:
Local domain configuration of the normal cavity without injector. The initial physical con-
figuration of the injector-cavity flame-holder is given in the legend box, where M denotes
the Mach number, Re the normalized Reynolds number, Pt the baseline total pressure, Tt

the baseline total temperature, and L/D the length to depth ratio of cavity.

The paper is organized as follows. In Section 2, a Legendre multi-domain spectral
method with inhomogeneous grid is explained. Stability and conservativity are de-
rived with the grid inhomogeneity. The generalized penalty interface conditions are
derived accordingly. The weighted penalty method is proposed and various examples
are illustrated. In Section 3, the governing equations and the injector-cavity system
are briefly described. The numerical results from the simulation of the supersonic cav-
ity flame-holder are provided. In this section, we verify that the proposed weighted
spectral penalty method is applied successfully with the inhomogeneous grid of the
injector-cavity system. The pressure fluctuations both in the normal and 30◦ wall
cavities are presented. Concluding remarks with a brief future work outline are given
in Section 4.

2 Multi-domain spectral method with inhomogeneous local mesh refine-
ment

2.1 Conservative spectral penalty methods for inhomogeneous grid

In this section, we will consider the spectral penalty method for the inhomogeneous
grid. We first consider the following one-dimensional conservation laws:

∂q(x, t)

∂t
+

∂f(q(x, t))

∂x
= 0, x ∈ R, t > 0. (2)

Here q(x, t) is the state vector and f(q(x, t)) is the flux vector. In [6] the conservative
multi-domain Legendre method was proposed to approximate (2) on the Legendre
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Gauss-Lobatto collocation points and such formulation was successfully used in [11].
In [6], theorems for the multi-domain Legendre penalty method have been provided
under the assumption that each subdomain has the same domain length but the
polynomial orders of approximation can be different. The different polynomial order in
each domain makes the grid system inhomogeneous. Thus the same polynomial order
has been used in [11] to avoid any numerical artifacts due to such inhomogeneity. In
this paper, we will further generalize the previous formulation for fully inhomogeneous
grid system.

For simplicity, we consider two subdomains ΩI = [xL, 0] and ΩII = [0, xR], for which
the domain interface is at x = 0. In [11], xL = −xR = −2, but xL and xR can be
different in this paper. Furthermore the left domain uses the polynomial order of N
and the right domain of M and N is not necessarily the same as M . The Legendre
multi-domain spectral penalty method is then given by

∂qI

N

∂t
+

∂I I

N
f(qI

N
)

∂x
=B(qI

N
(xL, t)) + SV (qI

N
) +

τ1QN(x)[f+(qI

N
(0, t)) − f+(qII

M
(0, t))] +

τ2QN(x)[f−(qI

N
(0, t)) − f−(qII

M
(0, t))],

∂qII

M

∂t
+

∂I II

M
f(qII

M
)

∂x
=B(qII

M
(xR, t)) + SV (qII

M
) +

τ3QM(x)[f+(qII

M
(0, t)) − f+(qI

N
(0, t))] +

τ4QM(x)[f−(qII

M
(0, t)) − f−(qI

N
(0, t))]. (3)

Here qI

N
denotes the numerical approximation of q(x, t) in Legendre polynomial of

order N in ΩI and qII

M
of order M in ΩII . B is the boundary operator at the end

points, i.e. x = xL, xR and SV is the spectral vanishing-viscosity terms. I I

N
and I II

M
are

the Legendre interpolation operators for the left and right subdomains respectively.
QN and QM are the polynomials of order N and M respectively defined to vanish
at the collocation points except at the boundary or interface points, that is, for ΩI ,
QN(xi) = 0 for i = 1, · · · , N − 1 and QN (xi) = 1 for i = 0, N . The positive and
negative fluxes f+ and f− are defined by

f± =
∫

SΛ±S−1dq, (4)

with

A ≡
∂f

∂q
= SΛS−1. (5)

The Jacobian matrix A is assumed to be symmetric. Λ+ and Λ− are the diagonal
matrices composed of positive and negative eigenvalues of A respectively such as
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Λ = Λ+ +Λ−. S and λ are the variables related to the characteristics and its direction
of propagation. τ1, τ2, τ3 and τ4 are the penalty parameters and all are constants. As
in [11], we assume that the boundary terms and the spectral vanishing-viscosity terms
do not cause any instabilities and they do not appear in the following analysis. For the
following theorems we define the discrete Legendre norm (p, q)N :=

∑N
i=0 p(xi)q(xi)ωi.

xi are the Legendre Gauss-Lobatto collocation points and ωi = 2
N(N+1)[LN (ξ(xi))]2

where

ξ is the map from x to the Legendre Gauss-Lobatto points over [−1, 1]. If pq ∈ P2N−1,
the discrete sum is exact, i.e. (p, q)N =

∫ 1
−1 p(ξ(x))q(ξ(x))dξ. In the following analysis,

we define the weight vector ~ωI
N as the weight vector in ΩI with N + 1 components

such as ~ωI
N = (ωI

0, · · · , ωI
N)T . We note that ωI

N without the vector symbol denotes
the last component of ~ωI

N .

The scheme given in (3) is conservative if xL = −xR = −2 and the penalty parameters
satisfy the following conditions

τ1ω
I

N
− τ3ω

II

M
= 1, τ2ω

I

N
− τ4ω

II

M
= 1. (6)

Here we note that there is a typo in the first equation of Eq. (23) on page 332 in
[11]. The second term in the equation should not be τ1ω

II
M but should be τ3ω

II
M as

given in the theorem above.

The scheme (3) is stable if xL = −xR = −2 and the penalty parameters satisfy the
followings

2τ1ω
I

N
≤ 1, 2τ2ω

I

N
≥ 1, 2τ3ω

II

M
≤ −1, 2τ4ω

II

M
≥ −1, (7)

τ1ω
I

N
− τ3ω

II

M
= 1, τ2ω

I

N
− τ4ω

II

M
= 1. (8)

Here note that the scheme is stable even though the grid system is inhomogeneous,
i.e. N 6= M .

If each subdomain has the same domain interval ∆, then the stability conditions are
given by, defining ∆2 = 2/∆,

2τ1ω
I

N
≤ ∆2, 2τ2ω

I

N
≥ ∆2, 2τ3ω

II

M
≤ −∆2, 2τ4ω

II

M
≥ −∆2,

τ1ω
I

N
− τ3ω

II

M
= ∆2, τ2ω

I

N
− τ4ω

II

M
= ∆2.
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Proof: The proof is done easily using the fact that for ΩI ,

(~ωI,
∂II

Nf(qI
N)

∂x
)N =

∫ 1

−1

∂II
Nf(qI

N)

∂x
dξ =

2

∆

∫ 1

−1

∂II
Nf(qI

N)

∂ξ
dξ =

2

∆
(f(0) − f(xL))(9)

since II
Nf(qI

N) ∈ P2N−1 and in the same way for ΩII .

If the interval of each subdomain is different, then the scheme (3) is conservative if
the following conditions are satisfied.

∆I

2
τ1ω

I

N
−

∆II

2
τ3ω

II

M
= 1,

∆I

2
τ2ω

I

N
−

∆II

2
τ4ω

II

M
= 1. (10)

Proof: Multiply the equations for qI

N
and qII

M
in (3) by ~ωI

M
= (ωI

0, · · · , ωI
N)T and

~ωII

M
= (ωII

0 , · · · , ωII
M)T . Then using the Legendre quadrature rule we have

∫ 0

xL

∂qI

N

∂t
dx +

∫ xR

0

∂qII

M

∂t
dx =−

∫ 0

xL

∂f I

N

∂x
dx −

∫ xR

0

∂f II

M

∂x
dx

+
∆I

2
τ1[f

+(qI

N
(0, t))ωI

N
− f+(qII

M
(0, t))ωI

N
]

+
∆I

2
τ2[f

−(qI

N
(0, t))ωI

N
− f−(qII

M
(0, t))ωI

N
]

+
∆II

2
τ3[f

+(qII

M
(0, t))ωII

0 − f+(qI

N
(0, t))ωII

0 ]

+
∆II

2
τ4[f

−(qII

M
(0, t))ωII

0 − f−(qI

N
(0, t))ωII

0 ].

Using the fact that
∫ ∂fN

∂x
dx = f+ + f− and ωII

0 = ωII

M
, we have the RHS of the above

equation without the boundary terms become

RHS = f+(qI

N
(0, t))[

∆I

2
τ1ω

I

N
−

∆II

2
τ3ω

II

M
− 1] + f+(qII

M
(0, t))[

∆II

2
τ3ω

II

M
−

∆I

2
τ1ω

I

N
+ 1] +

f−(qI

N
(0, t))[

∆I

2
τ2ω

I

N
−

∆II

2
τ4ω

II

M
− 1] + f−(qII

M
(0, t))[

∆II

2
τ4ω

II

M
−

∆I

2
τ2ω

I

N
+ 1].

For any f±(0, t) (note that f±(qI

N
(0, t)) 6= f±(qII

M
(0, t)) in general), the RHS vanishes

if the conditions Eq. (10) are satisfied. 2
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The scheme (3) is stable if

2τ1ω
I
N ≤

2

∆I
, 2τ3ω

II
M ≤ −

2

∆II
, 2τ2ω

I
N ≥

2

∆I
, 2τ4ω

II
M ≥ −

2

∆II
, (11)

(τ1ω
I
N − τ3ω

II
M)2 − 2(τ1ω

I
N

2

∆II
− τ3ω

II
M

2

∆I
) +

2

∆I

2

∆II
≤ 0,

(τ2ω
I
N − τ4ω

II
M)2 − 2(τ2ω

I
N

2

∆II
− τ4ω

II
M

2

∆I
) +

2

∆I

2

∆II
≤ 0, (12)

Proof: Multiplying each of Eq. (3) by ~qI and ~qII, then the energy E(t) = 2
∆I

∫ 0
xL

q2(x, t)dx+
2

∆II

∫ xR

0 q2(x, t)dx becomes

1

2

dE(t)

dt
= (τ1ω

I
N −

2

∆I

1

2
)α+

0 − (τ1ω
I
N + τ3ω

II
M)γ+

0 + (τ3ω
II
M +

2

∆II

1

2
)β+

0

+ (τ2ω
I
N −

2

∆I

1

2
)α−

0 − (τ2ω
I
N + τ4ω

II
M)γ−

0 + (τ4ω
II
M +

2

∆II

1

2
)β−

0 ,

where α±
0 = ((qI

N(0, t))T A±qI
N(0, t), β±

0 = (qII
M(0, t))T A±qII

M(0, t), and γ±
0 = (qI

N(0, t))T A±qII
M(0, t).

To make the RHS less than or equal to zero, first, the coefficients of the 2nd order
terms corresponding the positive flux (negative flux) should be non-positive (non-
negative) which provides the first conditions in Eq. (12). Also, the determinant each
of the quadratic equations should be non-positive. This provides the second conditions
Eq. (12). 2

τ1ωI
N

τ 3ω
II M
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Fig. 2. Stability regions. Left: ∆I = ∆II = 2. Right: ∆I = 2 and ∆II → ∞.

Figure 2 shows the stability regions for τ1ω
I
N and τ2ω

II
M with various ∆II for which

∆I = 2 is used. When ∆II = 2, that is, when the grid is homogeneous, the stability
region is simply given as a linear line shown as the blue straight line in the figure.
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As the domain size ratio between ΩI and ΩII increases the stability region becomes
broader. The green and red dotted lines in the figure represent the stability region for
∆II = 4 and ∆II = 10, respectively. The black solid line represents the limit of the
stability region, i.e. for ∆II → ∞. The limit line is given by (τ1ω

I
N−τ3ω

II
M)2+2τ3ω

II
M ≤

0 and is independent of the value of ∆II .

If τ1 = τ4 = 0, the penalty interface conditions are basically the same as the upwind
methods. If τ1 = τ2 and τ3 = τ4 then the scheme does not split the flux into the
positive and negative ones but uses the flux itself in the penalty terms.

It is important to consider the averaging method with the inhomogeneous grid system
since it is the popular and simplest interface conditions. For the averaging method, the
continuity of q at the interface is ensured. The averaging method is a special case of
the penalty method. The averaging method has been effectively used in the previous
work [11] for the homogeneous grid system. Since we suppose that the boundary
operators B and the spectral vanishing-viscosity SV ensure the stability at the outer
boundaries x = xL, and xR, we consider only the contributions from the interface at
x = 0.

Now we consider the following penalty scheme for the averaging method

∂qI

N

∂t
+

∂I I

N
f(qI

N
)

∂x
= τ1QN(x)[f+

x (qI

N
(0, t)) − f+

x (qII

M
(0, t))] +

τ2QN(x)[f−
x (qI

N
(0, t)) − f−

x (qII

M
(0, t))],

∂qII

M

∂t
+

∂I II

M
f(qII

M
)

∂x
= τ3QM(x)[f+

x (qII

M
(0, t)) − f+

x (qI

N
(0, t))] +

τ4QM(x)[f−
x (qII

M
(0, t)) − f−

x (qI

N
(0, t))], (13)

where f±
x denotes the derivative f± with respective to x. The averaging method

considered here is for the case that each subdomain can have different polynomial
orders such as N and M for ΩI and ΩII , respectively. In [11], N = M has been used
for the averaging.

[Averaging, [11]] The scheme (13) is the averaging method if

τ1 = τ2 = τ3 = τ4 = 1
2
. (14)
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Proof: If (14) is satisfied then (13) becomes, at x = 0

∂qI

N

∂t
=

∂qII

M

∂t
= −

∂

∂x

(

1
2

(

II

N
f(qI

N
) + III

M f(qII

M
)
))

.2 (15)

If (14) is satisfied, the scheme (13) is conservative for any N and M and ∆I and
∆II . Proof: By multiplying (13) by the weight vectors ~ωI

N
and ~ωII

M
and using the

conditions (14) we have

∫ 0

xL

∂qI

N

∂t
dx +

∫ xR

0

∂qII

M

∂t
dx =−

∫ 0

xL

∂f I

N

∂x
dx −

∫ xR

0

∂f II

M

∂x
dx

+1
2
[fx(q

I

N
(0, t))

∆I

2
ωI

N
− fx(q

II

M
(0, t))

∆II

2
ωII

0 ]

+1
2
[fx(q

II

M
(0, t))

∆II

2
ωII

0 −
∆I

2
fx(q

I

N
(0, t))ωI

N
].

Thus ignoring the outer boundaries, the RHS of the above equation becomes

RHS = −f I

N
(qI

N
(0, t)) + f II

N
(qII

M
(0, t)) = 0. (16)

Here we used the fact that qI

N
(0, t) = qII

M
(0, t) and f I

N
(qI

N
(0, t)) = f II

N
(qII

M
(0, t)) from

Theorem 2.1. 2

The conditions of the penalty parameters obtained above are independent of the
orders of each subdomain. Moreover, they are independent of the domain size as
well.

With (14) the scheme (13) is not necessarily stable in general.

Proof: By taking the discrete norms, the energy of (13) E(t) = 2
∆I

∫ 0
xL

q2(x, t)dx +
2

∆II

∫ xR

0 q2(x, t)dx becomes without the boundary terms

1
2

dE(t)

dt
=−

2

∆I
(qI

N(0, t))T AqI
N(0, t) +

2

∆II
(qII

M (0, t))TAqII
M (0, t)

+(qI
N(0, t) − qII

M(0, t))
[

AqI
x − AqII

x

]

=

[

2(∆I − ∆II)

∆I∆II

]

(qI
N (0, t))TA±qI

N (0, t).
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where we use that qI

N
(0, t) = qII

M
(0, t) and τ1 = τ2 = τ3 = τ4 = 1

2
. Thus if ∆I 6= ∆II ,

the RHS does not necessarily non-positive. The RHS, however vanishes if ∆I = ∆II

so that E(t) = E(0). 2

The continuity of q at the interface is ensured by using the averaging method (13).
This, however, does not necessarily imply that the first derivative is also continuous
at the interface. In general the first derivative is discontinuous.

2.2 Weighted spectral penalty method

In the previous section, it has been shown that the conservative and stable penalty
method can be constructed for fully inhomogeneous grids, i.e. N 6= M and ∆I 6= ∆II

except the averaging method. The conditions obtained in the previous section are
only necessary conditions. For example, the stability conditions, (7) and (8) say that
the scheme (3) is stable if τ1 = τ2 = 1

2ωI
N

and τ3 = τ4 = − 1
2ωII

M

. These conditions, albeit

stable, can yield the nonphysical reflecting solutions at the inhomogeneous domain
interfaces because the positive and negative fluxes are equally penalized as we will
show in this section. In this section, the weighted spectral penalty method for the
inhomogeneous grid is introduced to reduce the nonphysical modes at the domain
interfaces.

With the weighted spectral penalty method, the incoming or outgoing characteristics
are penalized with different weights if the inhomogeneous domain system is considered
such that the incoming fluxes are penalized with the larger values of the penalty
parameters than the outgoing fluxes. In the Legendre spectral penalty equation (3),
the weighted spectral penalty method for ΩI exploits

|τ2| � |τ1|,

and for ΩII

|τ3| � |τ4|.

The numerical simulation results of supersonic reactive cavity flow presented in this
paper show that the upwind characteristic interface conditions are not enough to en-
sure the smooth solutions across the interfaces. We will show in the following sections
that by weighting the incoming fluxes against the outgoing fluxes, the nonphysical
modes at the domain interfaces can be reduced. The weight, however, can not be
arbitrarily large due to the CFL restriction. In practice, we use the fixed weight for
each penalty parameter. Since the problem considered in this paper is highly non-
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linear, the fixed weight for ∀t > 0 may not be enough to prevent the growth at the
interfaces. We use the local spectral vanishing viscosity method with the weighted
penalty method to prevent any growth at the interfaces.

2.2.1 Reflection coefficients of the weighted penalty interface conditions

In order to explain how the weighted spectral penalty method can reduce the non-
physical reflection modes, the reflection coefficients analysis is used. Here the reflection
modes are obtained due to the different resolution of each subdomain across the
domain interfaces although the solution can be continuous. Consider the following
simple linear hyperbolic equation

qt + (Fq)x = 0, q : R × R → R
2, x ∈ R, t > 0, (17)

where

q =







u

v





, F =







0 1

1 0





 . (18)

The same equation has been considered to show the reflecting modes at the domain
interfaces with the spectral Galerkin method in [15]. We seek a wave solution such
that

q(x, t) = exp(iωt)q̂(x), x ∈ [−2, 2], t ≥ 0. (19)

Plugging the wave solution into (18) yields

q̂(x) = Aq1 exp(−iωx) + Bq2 exp(iωx), (20)

where q1 = (1, 1)T and q2 = (1,−1)T .

Suppose that we have two subdomains ΩI = [−2, 0], and ΩII = [0, 2]. Let B± be the
boundary operators at the end points, i.e. x = −2 and x = 2. And f+ and f− are
f± = F±q = SΛ±S−1q ;

f+ =
1

2







u + v

u + v





, f− =
1

2







−u + v

u − v





. (21)

Here we assume that the boundary operator B is taken properly such that this
treatment does not destroy the global stability and there is no reflection from the
boundaries. In other words, we assume that we have the perfect and stable absorbing
boundary operator at x = ±2. Plugging the wave solutions into the Legendre spectral
method (3), we have the following linear system at the interface, i.e. at x = 0,
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τ1(A
I − AII) − τ2(B

I − BII) = 0, τ3(A
II − AI) − τ4(B

II − BI) = 0,

τ1(A
I − AII) + τ2(B

I − BII) = 0, τ3(A
II − AI) + τ4(B

II − BI) = 0.

The above linear systems can be rewritten in the matrix formWX = ZX with

X =





















AI

BI

AII

BII





















, W =





















−τ1 τ1 0 0

−τ2 τ2 0 0

0 0 −τ3 τ3

0 0 −τ4 τ4





















, Z =





















0 0 −τ1 τ1

0 0 −τ2 τ2

−τ3 τ3 0 0

−τ4 τ4 0 0





















.

The system is not well-posed as det(W − Z) = 0. In fact this linear system can be
solved by taking into account that AII and BII are considered as the given boundary
values for the solution of ΩI and AI and BI of ΩII in the real computation. In order to
look at the possible reflecting modes at the interface, assume that the non-zero wave
solutions are locally defined only in ΩI, that is, the solution is compactly supported
in ΩI such that it vanishes in ΩII . Thus AII = BII = 0. We take the ratio of the
coefficients at the interface using

τ1A
I − τ2B

I = 0, τ1A
I + τ2B

I = 0.

Define the reflection coefficients R0 at x = 0 for ΩI . Since A is corresponding to
the outgoing flux and B to the incoming flux at x = 0, respectively, the reflection
coefficients R0 is given by

R0 =

∣

∣

∣

∣

∣

BI

AI

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

τ1

τ2

∣

∣

∣

∣

. (22)

Table I
Interface conditions and reflection coefficients.

Case Interface conditions Reflection coefficients

T-1 τ1 = 0 R0 = 0

T-2 τ1 = τ2 = τ R0 = 1

T-3 τ1 � τ2 R0 � 1

T-4 τ1 � τ2 R0 � 1

We shall consider four different cases as given in table I. By definition, there is no
reflection at the interface for the case T-1, the upwind method. For the case T-2, we
do not split the flux

τ1f
+ + τ2f

− = τ(f+ + f−) = τf. (23)
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Consequently, the reflection is obvious although the method is simple. The case T-3
is the weighted penalty method. The case T-4 weights the outgoing flux against the
incoming flux.

For illustration, consider a step function, i.e.

u = v =











1 x ∈ ΩI

0 x ∈ ΩII

.

Figure 3 shows the solutions after one time integration at t = ∆t = 0.0001 for each
case in Table 1. τ1 = τ2 = 1

2ωN
are used for the case T-2, τ2 ∼ O(N3) and τ1 ∼ O(N2)

are used for the case T-3 and τ1 ∼ O(N3) and τ2 ∼ O(N2) are used for the case T-4.
Note the different behaviors of the case T-3 and the case T-4. For the case T-3 the
penalty parameters associated with the incoming flux are weighted while the outgoing
flux are weighted for the case T-4. The solution for the case T-3 does not show the
overshoot at the interface for ΩI . For the case T-4, the solution of ΩI at interface
shows the overshoot. The behaviors of the interface solution of ΩII for each case can
be explained by taking into account that the scheme is in fact conservative.

(a) T-1: τ1 = 0 (b) T-2: τ1 = τ2 = 1
2ωN
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(c) T-3: τ2 ∼ O(N3) (d) T-4: τ1 ∼ O(N3)
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Fig. 3. Shock calculation at the first time step
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2.2.2 Reflection and instability

We consider more numerical examples to confirm the performance of the weighted
spectral penalty method.

Homogeneous grid: First consider the same wave equation with the boundary condi-
tions

q = (u, v)T , f = Fq = (v, u)T , (24)

Bq :=











u(x, t) − v(x, t) = 0, x = 4

u(x, t) + v(x, t) = 0, x = 0
, (25)

where B is the boundary operator. Here we again consider two subdomains ΩI = [0, 2]
and ΩII = [2, 4] with the same polynomial order N . For the boundary conditions at
x = 0 and x = 4, we use the non-reflecting boundary conditions. The spectral penalty
method (3) described in the above sections is used with the Legendre polynomials.

We denote M-A, M-UW, M-NFS and M-WP by the averaging, upwind, no-flux split-
ting and the weighted penalty methods, respectively. They are listed in the following
table below.

Method Interface Conditions Remark

M-A τ1 = τ2 = τ3 = τ4 = 1
2 Averaging Method

M-UW τ1 = τ4 = 0, τ2 = −τ3 = 1
ωN

Upwind Method

M-NFS τ1 = τ2 = −τ3 = −τ4 = 1
2ωN

No-flux-Splitting Method

M-WP O(τ2) = O(τ3) ∼ N3, τ1 6= 0 6= τ4 Weighted Penalty Method

Note that all four methods satisfy the stability condition derived in (8) as each sub-
domain has the same polynomial order N and domain length ∆.

The CFL condition is given by

min
i

∆t

∆xi
≤ CFL, (26)
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where CFL is a positive constant and taken to make ∆t is small enough for every
case.

Table II
The maximum error (L∞) for M-A, M-UW, M-NFS and M-WP at time t = 1.5.

N\Method M-A M-UW M-NFS M-WP

4 0.67 0.82 0.13E+01 0.74

8 0.65E-02 0.28E-02 0.82E-02 0.57E-02

16 0.34E-09 0.38E-09 0.65E-09 0.29E-09

32 0.52E-11 0.52E-11 0.52E-11 0.52E-11

64 0.54E-11 0.51E-11 0.54E-11 0.50E-11

Table II shows the L∞ error for each method. The overall performance is almost
the same for each method while the M-WP performs slightly better than the other
methods.

Inhomogeneous grid

Now we consider the same problem with 3 subdomains, each of them having the
same domain intervals, i.e. Ω1 = [0, 2], Ω2 = [2, 4] and Ω3 = [4, 6]. For these three
subdomains, consider the following two different cases:

Case Grid resolution

C-1 (homogeneous) N1 = N2 = N3 = 8

C-2 (inhomogeneous) N1 = 8, N2 = 32, N3 = 8

Note that every method satisfies the stability condition for the case C-1. For the
case C-2, only the M-A, which is the averaging method, does not satisfy the stabil-
ity condition as explained in Section 2.1, but the M-NFS still satisfies the stability
condition.

Table III shows the L∞ error for each case for the whole domain. As shown in the
table, the M-A and the M-NFS show the instability at the interfaces for the case C-2.
Table IV shows the L∞ error for Ω2 for each case. The L∞ error for Ω2 is less than
that of global L∞ error for the M-UW and the M-WP of the case C-2 because the
higher polynomial order of N is used.
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Table III
The maximum error (L∞) for the case C-1 and the case C-2 at time t = 1.5.

Case\Method M-A M-UW M-NFS M-WP

C-1 0.83E-02 0.29E-02 0.11E-01 0.52E-02

C-2 unstable 0.25E-02 unstable 0.65E-02

Table IV
The maximum error (L∞) of Ω2 for C-1 and C-2 at time t = 1.5.

Case\Method M-A M-UW M-NFS M-WP

C-1 0.83E-02 0.29E-02 0.10E-01 0.51E-02

C-2 unstable 0.13E-02 unstable 0.51E-02

The instabilities of the M-A and the M-NFS are illustrated in Fig. 4. In the figure, the
top figures represent the M-A at t = 0.4 and the bottom figures the M-NFS at t = 1.5.
The left figures show u+v and the right u−v. As shown in the figures, the locations of
the instability are different for the M-A and the M-NFS. Since N2 > N1 = N3, there
exist higher modes in Ω2 which do not appear in the approximations for both Ω1 and
Ω3. For the M-A, i.e. the averaging method, the figure indicates that the instability
occurs at the interface of Ω1 and Ω2 for u + v, and the instability at the interface of
Ω2 and Ω3 for u−v. This implies that the sudden growth at the interface occurs when
the characteristic of the lower modes enters the subdomain where the higher modes
appear in the approximation. For the M-NFS, the growth occurs at different locations.
If the outgoing characteristic is approximated with the higher modes, such modes in
the approximation are reflected as if the adjacent subdomain plays a role as a wall
boundary. The subdomain Ω2 yields a free boundary condition for the lower mode
wave solutions entering Ω2. No significant growth at the interface is not observed for
the weighted penalty method.

2.2.3 Adaptive super-viscosity method

As mentioned above, we use the fixed weight for each penalty parameter for the real
computation and this is not enough for preventing the growth at the interface if
the grid system is highly inhomogeneous. The super-viscosity method is used at the
interface when the weighted penalty method fails to reduce the nonphysical growing
modes. The super-viscosity method is only applied when and where it is necessary.
Since the nonphysical reflecting or growing modes are mainly contained in the higher
modes, the super-viscosity can be used to remove such higher modes locally at the
interface. This technique is critical for the stabilization of the multi-domain spectral
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(a) M-A, (u+v) (b) M-A, (u-v)
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(c) M-NFS, (u+v) (d) M-NFS, (u-v)
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Fig. 4. Solutions for the M-A at time t = 0.4 and the M-NFS at time t = 1.5. The u + v
and u − v characteristic waves are shown in the left and right columns, respectively.

penalty method for the nonlinear problems.

For the numerical experiment, we revisit the simple wave problem used in [5],



























∂u
∂t

+ ∂u
∂x

= 0 x ∈ Ω = (a, b), t > 0

u(a, t) = uL(t) t > 0

u(x, 0) = cos(πx) x ∈ Ω

. (27)

We seek an approximation of u with two subdomains, Ω1 = [0, 2] and Ω2 = [2, 4] with
N1 6= N2.

Two cases of grid resolution N in each subdomain are examined for the M-A and the
M-NFS :

Case Grid resolution

C-3 N1 = 32, N2 = 8

C-4 N1 = 8, N2 = 32
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Table V shows the L∞ errors of the case C-3 and the C-4. The table shows that the
methods are stable in either case except the M-A and the M-NFS. Both of them are
unstable if N1 < N2 and N2 < N1, respectively.

Table V
The maximum error (L∞) for C-3 and C-4 at time t = 1.5.

Case/Method M-A M-UW M-NFS M-WP

C-3 0.13E-01 0.46E-02 4.89 (Unstable) 0.49E-02

C-4 0.54E+17 (Unstable) 0.46E-02 0.461E-02 0.46E-02

To avoid the growth in time the artificial super vanishing viscosity(SV) term is added
at the interface:

∂uN

∂t
+

∂uN

∂x
=

1

N2s−1

[

∂

∂x
(1 − x2)

∂

∂x

]s

uN + PT x ∈ ∂Ω (28)

where s is a positive integer growing with N [16,20] and PT denotes the penalty
term. This SV method is equivalent to the filtering method [16,20]. The exponen-
tial filter method with the filtering order γ is used for the numerical experiment.
The exponential filter function σ(k) and the filtering order γ are defined as σ(k) =
exp(−εM (k/N)γ) where k is the mode number k = 0, · · · , N and N is the polynomial
order used. The positive constant εM is chosen such that σ(N) becomes machine zero.
Typically εM ∼ 32.

Table VI shows the results for the M-A and the M-NFS with the different orders
of filtering γ. As the table indicates there no significant growth has been observed.
Comparing with the results in Table II, however, we notice that the filtering method
permits a lose of accuracy. For example, the L∞ error of M-NFS/C-3(N = (32, 8))
is 0.11 × 10−1 and M-NFS/C-4 (N = (8, 32)) is 0.46 × 10−2. Table VI also indicates
that the methods are stable even though γ → ∞, which implies that stability can be
achieved even with the small viscosity added.

Fixing the filtering order γ = 16, Table VII shows the full recovery of the accuracy
as N increases.

Here we note that the weighted penalty method is proposed for the 1D. For the 2D
problem, one needs to find the proper conditions for the corner of each subdomain.
Such conditions will be investigated in our future work. The 2D numerical experiments
indicate, however, that the proposed method with the SV method applied at the
interface and corner yields a stable and accurate result as shown in the next sections.
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Table VI
The maximum error (L∞) for the reconstruction method.

(M-A/C-4) (Ω1) (M-NFS/C-3) (Ω2)

γ = 2 1.13 0.18

γ = 4 0.66 0.11E-01

γ = 8 0.21 0.11E-01

γ = 16 0.76E-01 0.11E-01

γ = 163 0.15E-01 0.11E-01

Table VII
The maximum error (L∞) for the reconstruction method ; γ = 16.

(M-A/C-4) (Ω1) (M-NFS/C-3) (Ω1)

N = 4 1.24 1.00

N = 8 0.76E-01 0.11E-01

N = 16 0.47E-06 0.12E-08

N = 32 0.74E-11 0.52E-11

3 Injector-cavity scramjet system

In this section, the proposed weighted spectral penalty method is applied for the
approximation of the supersonic flow interactions for the cavity-injector system with
the inhomogeneous grid system. To refine the localized injector field, we use the
narrow subdomain for the injector. The polynomial order of each domain is the same
for both x− and y− directions. Thus the grid inhomogeneity in this case comes from
the different domain length.

3.1 The cavity system and the governing equations

Cavity has been actively used as a flame-holder in scramjet engine (see the review by
Ben-Yakar and Hanson [4]). The injector-cavity system is illustrated in Figure 1. The
cavity system is categorized into 4 different types such as open, closed, transitional-
closed and transitional-open depending on the length scale of cavity [4]. The cavity
system with the length-to-depth ratio L/D < 7 ∼ 10 is called an open cavity as the
upper shear layer reattaches itself at the back face. Under the shear layer formed
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over cavity, the flows with the hydrogen fuel are possibly captured inside cavity and
generate the recirculation zone. The generated recirculation interacts with the shear
layer and the acoustic waves inside cavity. The radicals from the chemical reaction
between the hydrogen and oxygen gases reside inside cavity and trigger the auto-
ignition of the supersonic engine. In principle, the more stable and longer recirculation
is maintained, the more efficient fuel performance can be achieved.

The major question of the cavity flame-holder system that needs to be investigated
is: How does the fuel injection interact with cavity flows? There have been many
numerical studies on the recirculation and stabilizations of the flow inside cavity
but rarely on how the continuous supply of the fuel can affect the flow dynamics
inside cavity [2,3,7,21,22,25,26]. Since the injection of the fuel in the combustor is
necessary, however, the injection emerges as another important key parameter for the
optimal configuration of the cavity flame-holders. Both comprehensive laboratory and
numerical experiments have to be carried out to answer the question. In this work, we
use the length-to-depth ratio L/D = 4cm/1cm = 4, that is, we use the open cavity.

The governing equations are the compressible 2D reactive Navier-Stokes equations
with the chemical source terms given by

∂q

∂t
+

∂F

∂x
+

∂G

∂y
=

∂Fν

∂x
+

∂Gν

∂y
+ C, (29)

where q = (ρ, ρu, ρv, E, ρf)T is the state vector, F = (ρu, ρu2+P, ρuv, (E+P )u, ρfu)T

and G = (ρv, ρuv, ρv2 + P, (E + P )v, ρfv)T the inviscid fluxes, Fν and Gν the viscous
fluxes and C the chemical source term, respectively. Here ρ, u, v, E, P, and f denote
the density, the velocity in x-direction and the velocity in y-direction, the total energy,
the pressure and the mass fraction vector, respectively. The chemical model uses four
chemical species, H2, O2, H2O and N2 with the reversible chemical reaction between
hydrogen and oxygen gases given by

2H2 + O2 
 2H2O. (30)

A modified Arrhenius law gives the equilibrium reaction rate ke, the forward reaction
rate kf and the backward reaction rate kb as

ke =AeT exp(4.60517(Ee/T − 2.915)),

kf =Af exp(−Ef/(RT )),

kb = kf/ke,

where Ee = 12925, and Ef = 7200 are the activation energy and Ae = 83.006156, and
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Af = 5.541 × 1014 are the frequency factors. R is the universal gas constant. Each
chemical species has different dynamical viscosity µi based on the Sutherland’s law.
The mixture viscosity µ is obtained according to the Wilke’s law [24]. The Prandtl
number Pr and the Schmidt number Sc are taken to be 0.72 and 0.22 respectively
for the normal air. The equation of state is given by the assumption of the perfect
gas law. Detailed formulation of the equations can be found in [9,11].

With L fixed we consider four different angles of the aft wall, i.e. 90◦ and 30◦. For the
fluid conditions, the free stream Mach number M = 1.91, total pressure P = 2.82atm,
total temperature T = 830.6K and normalized Reynolds number Re = 3.9× 107m−1.
Note that the Reynolds number is normalized and has the unit of 1/[length], and
that the Reynolds number based on the cavity dimensions is about O(105). The
boundary layer thickness scale is δ = 5 × 10−4m, and the wall temperature is Tw =
460.7835K. For more detailed physical configuration and its explanation, we refer
[11]. The hydrogen fuel is injected 1.5cm ahead of the cavity with the injection Mach
number M = 1 (see Figure 1). The numerical experiments are conducted with two
different sizes of the injector diameter, d = 2mm and d = 2cm to investigate the
effect of the injector-channel flow interactions on the development of the shear layer
over cavity. The fuel is injected into the channel flow with the direction normal to
the base wall. The total pressure and the total temperature of the hydrogen jet are
2.828522atm and 830.6K respectively.

3.2 Grid inhomogeneity and the weighted penalty method

To deal with the grid inhomogeneity we use the weighted penalty method described
in Section 3.

The weighted penalty method is based on the characteristic decomposition and it
does not modify the stability conditions associated with Aν · q and Aν · ∂q for the
Navier-Stokes equations in [11].

Figure 5 shows the effect of the grid inhomogeneity on the solution. The subdomain
containing the injector has a smaller domain length than the channel subdomains.
The left figure shows the solution based on the averaging method (M-A) and the right
shows the solution based on the weighted penalty method (M-WP). The figures clearly
show that the averaging interface condition (M-A) yields a nonphysical concentration
near the domain interface while the weighted penalty interface condition (M-WP)
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yields smooth solutions across the interfaces. Figure 6 shows the results near the
injector subdomain with the weighted penalty method. The figure shows the flow
streamline near the injector. The figures show that there is no significant reflection
at the injector subdomain interfaces. It is also shown that the flow fields are well
resolved with the weighted penalty method. The small recirculation formed in front
of the injector is clearly seen. Such recirculation is physically formed due to the
interaction between the incoming channel flow and the hydrogen jet with the no-slip
boundary condition at the wall [3,4].

Fig. 5. Density contour of injector-cavity-channel flow by reactive Navier-Stokes equations
for the normal cavity flame-holder. Each subdomain has the same polynomial order for the
approximation, that is, each subdomain has N grid points both in x− and y−directions
but the different subdomain length. The left figure shows the solution using the averaging
interface conditions (M-A) and the right figure shows the solution using the weighted penalty
interface conditions (M-WP). The weighted penalty interface condition method considerably
reduces the nonphysical density concentration near the interfaces seen in the left figure.

Injector

Fig. 6. The recirculation zones formed in front of the hydrogen jet: the flow streamlines are
given with the hydrogen jet contour for the narrow injector-cavity system at t = 0.225ms.
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3.3 Shear layer interactions

One of the major effects on the stability of the recirculation zone is by the shear
layer over cavity. In [4] (also see references therein), several effects on the shear layer
formation and its interaction with the cavity have been discussed including the lo-
cation, size and the total number of injectors. For the numerical experiments, we
consider two different injectors, the narrow and broad injectors. Figure 7 shows the
water contours for both cases. By placing the injector ahead of the cavity front wall,
the pressure fluctuations are reduced and the sharp gradients found near the corner
of the aft wall are also weakened as the shear layer is being developed. The figures
show that the broader injector has more enhanced shear layer growth over the cavity
than the narrow jet. However, the pressure profiles in Figures 9 and ?? indicate that
the pressure oscillations can be more attenuated with the narrow injector than the
broad injector. This implies that there exists an optimal size of the injector with the
fixed location of the injector from the front cavity wall that minimizes the pressure
fluctuations and maximizes the stability of the recirculation zones inside cavity. Both
the broad and narrow injector systems also show that they have weaker flow gradi-
ents near the aft wall than the flow gradients obtained in our previous work without
the injector. The injection angle is normal to the wall but different injection angles
can be used. In [3,4], it has been discussed that the angled injector such as 30◦ or
60◦ can further weaken the possible bow shock found at the aft wall. Figure 8 shows
some detailed differences of the water and hydrogen profiles between the normal and
recessed cavities at t = 3.48ms for the narrow injector system.

3.4 Pressure fluctuations

In [11], we considered the cold and reactive flows without the hydrogen injector and
showed that the pressure fluctuations inside cavity can be considerably reduced if the
aft wall is slanted. Consequently this helps more stable recirculation inside cavity to
be developed. The generated acoustic waves disturbing the recirculation are reflected
back to the shear layer due to the slantness of the rear wall. Similar results are
found in the cavity system with the injection fields. Figure 9 shows the pressure
fluctuation history profiles for the normal (90◦, top figures) and slanted wall (30◦,
bottom figures) cases for the broad (left) and narrow (right) injectors. In the figures,
the pressure fluctuations are measured to tUo/D ∼ 150 but plotted in the same
scale used in Figure 6 of [11] for the comparison. The pressures are measured at
the center of cavity. For the broad injector-cavity system, it is clearly shown that
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Injector Injector

Injector Injector

Fig. 7. Water production and transport for 90◦ and 30◦ cavity walls: the upper figures shows
the broad injector-cavity system and the bottom figures the water contours of the narrow
injector-cavity system at t = 0.225ms, respectively. There are 50 contour levels ranged from
−0.001 to 0.23.

Fig. 8. Water and hydrogen density profiles at t = 3.48ms for the narrow injector-cavity
system with 30◦ and 90◦ aft walls. The top figures show the water density contours and the
bottom figures the hydrogen density contours.

the pressure fluctuations are much attenuated for the lower aft wall case and these
features are similar to those for the non-reactive cold flow cases. For the narrow
injector-cavity system, the pressure fluctuations for both 90◦ and 30◦ wall cavities
are highly attenuated compared to those for the broad injector-cavity system. The
differences of the pressure fluctuations between 30◦ and 90◦ are not significant, but
one can observe that the lower angled wall cavity has less pressure fluctuations than
the normal wall cavity. These results are similar to those for the reactive flow cases
without the injection fields. Note that the pressure fluctuations of the normal wall
cavity system are also much attenuated compared to the pressure fluctuation of the
normal wall cavity system without the injection fields. The injector field in front of
the cavity increases the stability of the recirculation inside cavity.
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Fig. 9. Pressure history for broad (left) and narrow (right) injector-cavity flows at the center
of cavity. For the broad jet, the diameter is d = 2cm and d = 2mm for the narrow jet. Each
panel shows the case of 90◦ and 30◦ cavity walls from top to bottom.

4 Summary

In this research, the direct numerical simulation of the supersonic injector-cavity
scramjet system has been carried out with the multi-domain spectral penalty method
with the inhomogeneous grid system. In order to minimize the development of the
nonphysical modes generated at the domain interfaces due to the grid inhomogeneity,
we first described the stable and conservative interface conditions of the multi-domain
spectral penalty method for the inhomogeneous grid system. For general inhomoge-
neous grid system, it is shown that it is possible to construct a stable and conservative
spectral penalty method. For the averaging method, it is also shown that the conser-
vativity can be preserved but the stability is not maintained in general. The weighted
penalty interface conditions is then proposed to minimize the non-physical effect at
the inhomogeneous grid interfaces. The weighted penalty method gives more weight
to the incoming fluxes than the outgoing fluxes. For the numerical experiments, we
use the fixed weight for all time. The weight, however, can be adaptively determined
depending on the flow conditions. Such adaptivity will be investigated in our future
work. The weight penalty method reduces the nonphysical growth at the domain in-
terface considerably but not completely. The adaptive filtering method is used with
the weighted penalty method to stabilize any growth at the interface. The adaptive
filtering is only applied at a small number of points at the interface. The direct nu-
merical simulation shows that the proposed method successfully yields the stable and
accurate approximation of the injector-cavity flows with the inhomogeneous grids. It
is qualitatively shown that the recessed cavity yields a better performance of the pres-
sure fluctuation reduction and enhances the stability of the recirculation zones inside
cavity. The injector located in front of the cavity also reduces the pressure fluctuations
inside cavity. More detailed geometric configurations maximizing the attenuation of
the pressure fluctuations and the stability of the recirculation inside cavity will be
investigated in our future work. The future research work will also center around the
development of the 3D spectral penalty method with the weighted penalty conditions.
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5 Introduction

In this article we extend the one-dimensional Multi-Domain Hybrid Spectral-WENO
Method (Hybrid) for Hyperbolic Conservation Laws [7] to two-dimensions in space
and apply it to the classical Shock-Vortex interaction and Richtmyer-Meshkov insta-
bilities problem. The general idea of the Hybrid method is to use a multi-domain
framework in order to apply convenient spatial discretizations to the smooth and
rough parts of the numerical solution. Shocks and high gradients are kept at WENO
subdomains, while complex, but still smooth, details of the solution are treated within
spectral subdomains. Numerical efficiency is increased with respect to the classical
spectral and WENO methods: Postprocessing techniques of the spectral method ap-
proach of shocks [15,20] are avoided, since no Gibbs phenomenon will occur, and the
expensive characteristic decompositions and projections of the WENO method are
skipped at the smooth parts of the solution [2,4,6,12,13,19].

The main issues in the construction of the Hybrid method are the smoothness mea-
surement of the solution and the subdomains types switching algorithm. In this work
we employ the high order multi-resolution algorithm by Ami Harten [16] to build a lo-
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cal classification of the solution into smooth and rough. Originally built to decrease the
work of the fluxes computations of Conservation Laws, Harten’s Algorithm proposes
to use information from coarser grids when the solution is locally over-represented.
We instead use the multi-resolution information to apply distinct numerical method-
ologies to the different structures of the solution. The main goal is to conjugate the
higher efficiency of the spectral method with the shock-capturing capability of the
WENO method. The multi-resolution analysis is used to trigger the switching algo-
rithm to change the subdomains spatial discretizations if shocks start to develop at
a spectral subdomain, or if the solution becomes smooth at a WENO one. Moving
discontinuities are similarly treated by changing to (or maintaining as) WENO the
subdomains on their paths and switching to (or maintaining as) spectral the subdo-
mains that were left behind. These changes are performed via Lagrangian and spectral
interpolations of the local solutions to the new discretizations grids. Interpolation is
also used to patch the solutions at the interfaces. While a simple average is sufficient
for the interfaces where the solution is smooth, using the same grid spacing at adjacent
WENO subdomains is necessary for a conservative transmission of shocks [28]. Even
though we do not have a theoretical proof of the conservation of the Hybrid scheme,
we argue that with the conjugation of two conservative schemes with a conservative
WENO interface and the high order accuracy of the conservative spectral scheme, the
conservation error should be spectrally small. We have numerically demonstrated this
fact in [7] through a long time time integration of the inviscid Burgers equations with
correct shock speed and achieved excellent agreement with the analytical solution of
the standard Riemann shock-tube problems, such as the Lax and the Sod problem of
the Euler Equations.

The paper is organized as follows: Section 6 provides quick reviews on spectral and
WENO methods. The Multi-Resolution analysis is discussed in details at Section 7
and the Hybrid Method is introduced at Section 8. The Switching Algorithm is pre-
sented in Section 8.3 and numerical experiments with two dimensional compressible
flows are finally presented at Section 9. Concluding remarks are given in Section 4.
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6 Spectral and WENO Methods

6.1 The Spectral Method

In spectral collocation methods, the function u(x) is interpolated by a global La-
grangian interpolation polynomial of degree N, lj(x), at a given set of collocation
points {xj, j = 0, . . . , N} as

INu(x) =
N
∑

j=0

u(xj)lj(x), (31)

where IN is the Interpolating operator and lj(xi) = δij.

The Lagrangian interpolation polynomial lj(x) can be constructed as

lj(x) =
q(x)

(x − xj)q′(xj)
, q(x) =

N
∏

j=0

(x − xj), (32)

and the derivative of INu becomes

dINu(x)

dx
=

N
∑

j=0

u(xj)
dlj(x)

dx
. (33)

In this study, we will employ the Chebyshev-Gauss-Lobatto quadrature points, namely,

xj = cos
(

πj

N

)

, (34)

which are the roots of (1 − x2)T ′
N
(x) and TN(x) is the N th degree Chebyshev poly-

nomial of the first kind. The Chebyshev interpolation polynomial is given by

lj(x) =
(−1)j+1(1 − x2)T ′

N(x)

cjN2(x − xj)
. (35)
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where cj = 1, j = 1, . . . , N − 1 and c0 = cN = 2.

The form of the differentiation matrix D =
dlj(xi)

dx
in (33) can be found in [8]. The

mapping devised by Kosloff and Tal-Ezer [22] will also be employed to enhance the
stability of the Chebyshev collocation scheme [5,9].

6.2 Filters

Spectral methods are highly efficient and accurate, when the solution and its deriva-
tives are smooth. In the presence of discontinuities, however, Gibbs Phenomenon
generates oscillations that contaminate the solution and causes the loss of the expo-
nential convergence. This is explained in spectral space by the linear decay rate of
the coefficients an of the global expansion:

u(x) =
∞
∑

n=0

anTn(x). (36)

In such a situation, one can modify the global expansion coefficients an to enhance
the convergence properties of the approximation via a filter function σ(η) [30] with
the following properties

σ(η)= σ(−η), σ(±1) = 0,

σ(0)= 1, σ(q)(0) = 0 q = 1, . . . , p − 1. (37)

If σ(η) has at least p− 1 continuous derivatives, σ(η) is termed a p th order filter. It
was proved in [30] that the filtered expansion converges faster to the correct solution
than the unfiltered original one in the case of a discontinuous function. Moreover,
the convergence rate depends solely on the order and the compactness of the filter
function σ(η) and the distance from the discontinuities.

The filter function used in this study is the Exponential filter given by

σ(η) = exp(−αηp), (38)

where α = − ln(ε) and ε is the machine zero.

The spectral filtering can be expressed
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• in the physical space as:

FNu(xi) =
N
∑

j=0

u(xj)Φji, Φji =
2

Ncj

N
∑

n=0

1

cn
σ
(

n

N

)

Tn(xi)Tn(xj), (39)

• in the transformed space as:

FNu(xi) =
N
∑

n=0

anσ
(

n

N

)

Tn(xi), an =
2

Ncn

N
∑

j=0

1

cj
ujTn(xj), (40)

where FN is the filtering operator.

While filtering techniques can improve the overall convergence properties of the so-
lution away from discontinuities, the solution near the discontinuities remains poor.
Post-processing of the resulting oscillatory data to recover spectrally accurate non-
oscillatory results can be performed by various reconstruction techniques, such as the
direct and inverse Gegenbauer reconstruction [15,20] and Padé reconstruction [25].
Reconstruction techniques are, in general, computationally costly and certain com-
plications might arise. For instance, as the degree of the reconstructed polynomial
increases, the Gegenbauer transformation matrices become ill-conditioned due to the
round-off error [20]. Moreover, the extension of these reconstruction techniques to
higher dimensions is not trivial.

6.3 The WENO Method

WENO schemes were designed for the numerical solution of Hyperbolic Conserva-
tion Laws in the form (for ease of presentation the discussion is based on the one-
dimensional formulation)

ut + f(u)x = 0. (41)

The Jacobian ∂f

∂u
for (41) is needed to project the system into its characteristic form

and, in general, ∂f

∂u
is not constant. To overcome the difficulty when computing the

flux at a cell boundary x
i+

1
2
, ”local freezing” of the matrix components is employed

using the Roe average u
i+

1
2

[27] defined as

f(ui+1) − f(ui) = f ′(u
i+

1
2
)(ui+1 − ui). (42)
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The numerical scheme for (41) can be written in the conservative form as

dui(t)

dt
= −

1

∆x
(f̂

i+
1
2
− f̂

i−
1
2
), (43)

where ui(t) is the numerical approximation to the point value u(xi, t) and ∆x is the
uniform grid spacing. The numerical flux based on the {uj, j = i − r, . . . , i + s}

f̂
i+

1
2

= f̂(ui−r, . . . , ui+s), (44)

satisfies the following conditions:

• f̂ is Lipschitz continuous in all arguments;
• f̂ is consistent with the physical flux f , i.e. f̂(u, . . . , u) = f(u).

The solution to the conservative scheme (43), if converges, will converge to a weak
solution. This is known as the Lax-Wendroff theorem.

The earlier works of van Leer [29], Boris and Book [1] and Harten’s TVD schemes
have led to the introduction of Essentially Non-Oscillatory (ENO) schemes [18], where
its basic premise is that of adaptivity of the stencil, based on the local smoothness
of the solution, using only a stencil free of discontinuities in the computation of flux
gradients. ENO schemes have been shown to generate sharp resolutions of shocks as
well as to maintain high order of accuracy in smooth regions.

An improvement of finite volume ENO – Weighted Essentially Non-Oscillatory (WENO)
schemes were proposed by Liu, Osher, and Chan [23]. WENO schemes use the same
idea as ENO, except that WENO uses a convex combination of all available smooth
stencils to obtain higher order of accuracy than the original ENO at smooth parts of
the solution. Finite Difference WENO schemes were later proposed by Jiang and Shu
[19].

In all numerical examples that follows, we use the fifth order characteristic-wise
WENO finite difference formulation, making use of the Roe average for the eigen-
system defined above and the global Lax-Fredrichs flux splitting

f± = 1
2
(f(u) ± αu), (45)

where α = maxu max1≤i≤Nλ
|λi(u)| and λi(u), i = 1, . . . , Nλ are the local eigenvalues

of the Jacobian ∂f

∂u
. The numerical flux f̂

i+
1
2

is computed by the WENO reconstruction

34



procedure. The interested reader is referred to [4] for details.

7 Multi-Resolution Analysis

The successful implementation of the Hybrid method depends on the ability to obtain
accurate information on the smoothness of a function. In this work, we employ the
Multi-Resolution (MR) algorithms by Harten [16,17] to detect the smooth and rough
parts of the numerical solution. The general idea is to generate a coarser grid of
averages of the point values of a function and measure the differences (MR coefficients)
di between the interpolated values from this sub-grid and the point values themselves.
A tolerance parameter εMR is chosen in order to classify as smooth those parts of the
function that can be well interpolated by the averaged function and as rough those
where the differences di are larger than the parameter εMR. We shall see that the order
of interpolation is relevant and the ratio between di of distinct orders may also be
taken as an indication of smoothness.

Let us start by showing two examples where one can notice the detection capabilities
of the Multi-Resolution analysis that will be presented below. The left and right
figures of Figure 10 show the piecewise analytic function

f(x) =



























10 + x3 −1 ≤ x < −0.5

x3 −0.5 ≤ x < 0

sin(2πx) 0 ≤ x ≤ 1

, (46)

and the density (ρ) of the Mach 3 Shock-Entropy wave interaction problem [19] as
computed by the classical fifth order WENO finite difference scheme, respectively.

The test function (46) has a jump discontinuity at x = −0.5 and a discontinuity at its
first derivative at x = 0. One can see that at each grid point the differences di decay
exponentially to zero inside the analytical pieces of the function when the order of
interpolation increases from nMR = 3 to nMR = 8. At the discontinuity x = 0.5, the
measured differences di are O(1) and remain unchanged despite the increase of the
interpolation order. Similar behavior is exhibited at the derivative discontinuity at
x = 0 with a smaller amplitude.

Also, in the right figure of Figure 10, the density of the Mach 3 Shock-Entropy wave
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Fig. 10. (Left) The third and eighth order MR coefficients di of the piecewise analytic func-
tion. (Right) The third, fifth and seventh order MR coefficients di of the density f(x) = ρ
of the Mach 3 Shock-Entropy wave interaction problem.

interaction problem and the corresponding MR coefficients di are shown for the third,
fifth and seventh order Multi-Resolution analysis. The location of the main shock is
at x ≈ 2.73 and the shocklets behind the main shock are well captured. The high
frequencies behind the main shock are much better distinguished with the higher
orders.

Averaging a function corresponds to filter the upper half of the spectrum. The main
idea of Harten’s smoothness classification is to measure how distant the actual values
of the function are from being predicted through interpolation of the lower half of the
frequencies contained in the sub-grid of averages. We now describe a detailed con-
struction of the sub-grid of averages and its corresponding interpolating polynomial,
finishing with a worked example.

Given an initial number of grid points N0 and grid spacing ∆x0, consider the set of
nested dyadic grids {Gk, 0 ≤ k ≤ L}, defined as:

Gk = {xk
i , i = 0, . . . , Nk}, (47)

where xk
i = i∆xk, ∆xk = 2k∆x0, Nk = 2−kN0. For each level k > 0 we define the set

of cell averages {f̄k
i , i = 1, . . . , Nk} at xk

i of a function f(x):

f̄k
i =

1

∆xk

∫ xk
i

xk
i−1

f(x)dx, (48)

and f̄ 0
i = f 0

i . Let f̃k
2i−1 be the approximation to f̄k

2i−1 by the unique polynomial of
degree 2s that interpolates f̄k

i+l, |l| ≤ s at xk
i+l, where r = 2s + 1 is the order of

approximation.
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The approximation differences, also called multiresolution coefficients, dk
i = f̄k−1

2i−1 −

f̃k−1
2i−1, at the k th grid level and grid point xi, have the property that if f(x) has p−1

continuous derivatives and a jump discontinuity at its p th derivative, then

dk
i ≈











∆xp
k[f

(p)
i ] for p ≤ r

∆xr
kf

(r)
i for p > r

, (49)

where [·] denotes the magnitude of the jump of the function inside.

From formula (49) it follows that

|dk−1
2i | ≈ 2−p̄|dk

i |, where p̄ = min{p, r}. (50)

Equation (50) shows that away from discontinuities, the MR coefficients dk
i diminish

in size with the refinement of the grid; close to discontinuities, they remain the same
size, independent of k. The MR coefficients dk

i were used in [17] in two ways. First,
finer grid data f̄ 0

i were mapped to its M level multiresolution representation f̄ 0
i =

(d1
i , · · · , dM

i , f̄M

i ) to form a multiscale version of a particular scheme, where truncation
of small quantities with respect to a tolerance parameter decreased the number of
flux computations. Secondly, the MR coefficients dk

i also acted as a shock detection
mechanism and an adaptive method was designed where a second-order Lax-Wendroff
scheme was locally switched to a first-order accurate TVD Roe scheme, whenever d1

i

was bigger than εMR.

Equation (49) also indicates that the variation of the MR order, nMR, can give ad-
ditional information on the type of the discontinuity. Nevertheless, in this work, we
will be limited at using only the first level k = 1 of the multiresolution coefficients
and we shall drop the superscript 1 from the d1

i from here on unless noted otherwise.

Hence, to find di, the idea is to construct a piecewise polynomial Pk(x) of degree
k = nMR using k+1 computed average values of fi, f̄i, at the equi-spaced grid xi such
that

Pk(xi) = f(xi) + O(∆xk+1), (51)

and

di = fi − Pk(xi). (52)

Given a tolerance level εMR, the smoothness of the function f(x) at xi would then be
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checked against the magnitude of the di, namely:











|di| ≤ εMR ⇒ solution is smooth.

|di| > εMR ⇒ solution is non-smooth.
(53)

The algorithm for computing the MR coefficients di is given next.

7.1 Computing the MR Coefficients

Consider an equi-spaced grid {xi = i∆x, i = −m, . . . , 0, . . . , N, . . . , N + M} where
∆x is the constant grid spacing. N can be an odd or an even number. Depending on
N and the even or odd order of the MR Analysis nMR, the number of ghost points m
and M required are given in table VIII.

N nMR m M

odd odd nMR + 1 nMR + 1

even odd nMR + 1 nMR

odd even nMR nMR + 2

even even nMR nMR + 1

Table VIII
The number of ghost points m and M required for the MR Analysis.

Given the grid point values of the function f(x), the average values are computed as

f̄i = 1
2
(f2i + f2i+1) , i = −

m

2
, . . . ,

N + M − 1

2
. (54)

We construct a piecewise k = nMR degree polynomial Pk(x) using the k+1 computed
average values of the given function, f̄i such that

Pk(xi) = f(xi) + O(∆xk+1). (55)

The polynomial Pk(xi), l = 1
2
m and L = l−1 or L = l if k is odd or even, respectively,

can be written as

Pk(xi) =
i+L
∑

r=i−l

αrf̄r. (56)
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However, since the coefficients α depend only on xi and do not depend on the function
f(x), the Pk(xi) can be written as:

Pk(xi) =











∑L
r=−l αrf̄i+r, mod(i, 2) = 0

∑L
r=−l βr+1f̄i+r, mod(i, 2) = 1

. (57)

In the case of mod(i, 2) = 1,

β−r = αr, r = −l, . . . , L. (58)

Furthermore, if nMR is even, the coefficients α are symmetric about r = 0, namely,
α−r = αr, r = 1, . . . , L.

The desired coefficients α are computed by requiring Pk(x) to be equal to each of the
first k + 1 monomials f(x) = 1, x, x2, . . . , xk and evaluated at any grid point x = x∗.
For simplicity, we take x∗ = 0. The f̄i are evaluated for i = −l, . . . , L. This procedure
results in a system of linear equations, A~α = ~b, where

A =





















1 . . . 1

−2l + (−2l + 1) . . . 2L + (2L + 1)
...

...
...

(−2l)k + (−2l + 1)k . . . (2L)k + (2L + 1)k





















,−→α =





















α−l

α−l+1

...

αL





















,
−→
b =





















1

0
...

0





















,

(59)
and A is a matrix of size (L + l + 1) × (L + l + 1).

Using (57), the k-th order Multi-Resolution coefficients di at xi can be computed as

di = fi − Pk(xi) i = 0, . . . , N. (60)

One can also evaluate the α by matching the terms in the Taylor series expansion using
(55) and (56) to any desired order, however this procedure may become cumbersome
for high order k.
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Example

To illustrate the procedure above, we will construct two unique local polynomials with
k = nMR = 3, such that Pk(x0) = f(x0)+O(∆xk+1) and Pk(x1) = f(x1)+O(∆xk+1).

To construct the desired polynomials one needs to find the unique coefficients {α−2, α−1, α0, α1}
and {β−1, β0, β1, β2} such that

α−2f̄−2 + α−1f̄−1 + α0f̄0 + α1f̄1 = f(x0) + O(∆x4) (61)

and
β−1f̄−1 + β0f̄0 + β1f̄1 + β2f̄2 = f(x1) + O(∆x4). (62)

The system of equations, (59), becomes

A =





















1 1 1 1

−7 −3 1 5

25 5 1 13

−91 −9 1 35





















, −→α =





















α−2

α−1

α0

α1





















,
−→
b =





















1

0

0

0





















. (63)

Solving this system yields

α−2 = −
3

64
, α−1 =

17

64
, α0 =

55

64
, α1 = −

5

64
, (64)

and {β−1 = α1, β0 = α0, β1 = α−1, β2 = α−2}.

The tolerance parameter εMR determines the dynamic activation of the spectral and
WENO spatial discretizations along the various subdomains of the hybrid method.
While a too small value of εMR activates the more expensive WENO method at sub-
domains where the solution is smooth, a larger value activates the spectral method
at a subdomain with low spatial resolution, generating oscillations. εMR also bears a
straight relation with the interpolation order nMR. High nMR values decrease the size
of εMR one needs to chose, since high frequencies are less mistaken by gradient jumps.
The general guideline is to start with a value for nMR at least equal to the order of
the WENO method and increase it according to the complexity of the solution. For
instance, nMR = 5 is a good choice for the piecewise smooth solution of the SOD
problem, the Entropy problem would work better with nMR = 7. For most of the
flows with shock that were tested, the value of εMR = 10−3 yielded a good balance
between computational speed and accuracy of the numerical solution.
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Fig. 11. (Left) Partition of the physical domain into spectral and WENO subdomains.
(Middle) Typical spectral subdomain. (Right) Typical WENO subdomain.

8 The Multi-Domain Hybrid Spectral-WENO method

We now describe the implementation of the Multi-Domain Hybrid Spectral-WENO
method (Hybrid), detailing the structure of the two-dimensional grid of subdomains,
the interfaces treatment and the algorithm that switches the spatial discretization of
the subdomains.

The main idea of the Hybrid method can be formulated as:
Avoid Gibbs phenomenon by keeping discontinuities at WENO subdomains and in-
crease the numerical efficiency by treating the smooth parts of the solution using a
spectral spatial discretization.

In this study, the physical domain is restricted to rectangular shapes and will be
partitioned into a (Nx

d
×Ny

d ) grid of subdomains. Figure 11 shows an example of such
a domain partition along with typical spectral and WENO subdomains. Note that
patching of subdomains occurs due to the ghost points of the WENO discretization.

We shall use a vector k = (kx, ky), kx = 1, . . . , Nx
d
, ky = 1, . . . , Ny

d to denote the
coordinates of the two dimensional subdomain grid. For example, k = (2, 3) means
the subdomain number kx = 2 in the x direction and ky = 3 in the y direction. Each
subdomain is initialized either as a spectral or WENO subdomain. The Chebyshev-
Gauss-Lobatto points are used for the spectral discretization and an uniformly spaced
grid with ghost points is used as the WENO grid.

For the sake of simplicity, we consider only square subdomains, with NS × NS grid
points at a pectral subdomain and NW × NW equi-spaced points at a WENO subdo-
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Fig. 12. (Left) Typical WENO subdomain. (Middle) ”Ghost Area”. (Right) ”Buffer Area”.

main. The number of ghost points is denoted by r and NB is the number of points
used for the buffer zone (see below).

8.1 Description of WENO subdomains

Each WENO subdomain k is composed of three parts: The ”Ghost Area”, the ”Buffer
Area”, and the ”Interior Area” as shown in Figure 12.

• Ghost Area:
The ”Ghost Area” is used for the WENO Reconstruction and for communication
with its neighboring subdomains and is subdivided into eight ”Ghost Zones”
{Gk

i , i = 1, . . . , 8} (see the middle figure of Figure 12),
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, (65)

where the stencil ranges are

Ig
0 = {x

−r, . . . , x−1}, I
g
1 = {x0, . . . , xN}, I

g
2 = {xN+1, . . . , xN+r},

Jg
0 = {y

−r, . . . , y−1}, J
g
1 = {y0, . . . , yN}, J

g
2 = {yN+1, . . . , yN+r},

with N = NW .
• Buffer Area:

The Buffer Area is used for the treatment of moving discontinuities. If a high
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gradient or shock is detected inside a buffer zone, the closest neighboring spectral
subdomain(s) is switched to WENO subdomain(s).

For two-dimensional problems, each WENO subdomain has eight ”Buffer Zones”
{Bk

i , i = A, . . . ,H} (see the right figure of Figure 12),
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0 × J b
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D
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2 × J b
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, (66)

where the stencil ranges are given by

Ib
0 = {x0, . . . , xM}, Ib

1 = {xM+1, . . . , xN−M}, Ib
2 = {xN−M+1, . . . , xN},

J b
0 = {y0, . . . , yM}, J

b
1 = {yM+1, . . . , yN−M}, J b

2 = {yN−M+1, . . . , yN},

with N = NW and M = NB. As greater is the value of NB, earlier is the detection
of shocks and gradients, however, at the cost of early switching of the neighboring
subdomains to WENO and greater chance of unnecessary costly computations.
Satisfactory results have been obtained with the default M = r in this study. It
should be noted that these buffer zone grid points are part of the interior grid
points and should not be confused with WENO ghost points.

• Interior Area:
Finally, the ”Interior Area” is all the WENO grid points W k excluding the ”Ghost
Area” and ”Buffer Area”, Ik = W k/(

⋃

i G
k

i

⊕⋃

i B
k

i ). If the high gradient stays
inside this area, no action is required by the neighbors.

8.2 Interface Conditions

The following configurations are representative of any two-dimensional domain par-
titions:

• Spectral-Spectral-Spectral-Spectral (Figure 13)
• Spectral-Spectral-Spectral-WENO (Figure 15)
• Spectral-Spectral-WENO-WENO (Figure 15)
• Spectral-WENO-WENO-WENO (Figure 15)
• WENO-WENO-WENO-WENO (Figure 14)
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The functional values in the spectral and WENO subdomains are denoted by sk

ij and
wk

ij respectively at (xi, yj) in the respective subdomain k. Centered at the subdomain
k, we define the superscripts k0,k1,k2,k3,k4,k5,k6,k7,k8 as















k8 = k + (−1, +1) , k7 = k + (+0, +1) , k6 = k + (+1, +1)

k1 = k + (−1, +0) , k0 = k , k5 = k + (+1, +0)

k2 = k + (−1,−1) , k3 = k + (+0,−1) , k4 = k + (+1,−1)















, (67)

and they denote the Center (k0), Left (k1), Bottom-Left (k2), Bottom (k3), Bottom-
Right (k4), Right (k5), Top-Right (k6), Top (k7), and Top-Left( k8) subdomains of
subdomain k = k0 respectively. For example sk1

ij is to be interpreted as a value at
the point (xi, yj) in the spectral Left subdomain k1 = k + (−1, +0). The subdo-
main interfaces consist of corners and shared sides among the spectral and WENO
subdomains.

Spectral-Spectral Interface

S S

S S

1 2

3 4

1,1

S S

S S

1 2

3 4

1,1

1,9

9,1

9,9

S S
1 2

Fig. 13. (Left) Spectral-Spectral-Spectral-Spectral subdomains configuration. (Middle) Cor-
ner point of all four spectral subdomains. (Right) Shared side of two spectral subdomains.

Corners only appear at the connection of two or more spectral subdomains, since the
grid points of the WENO subdomains never coincide with the spectral collocation
points at the interface. Corner values are assigned with the average of the values
of all connecting subdomains. For example, in figure 13, assuming that S1 is the
reference subdomain k0 and N = NS,

sk0
0N

= sk3
00 = sk4

N0 = sk5
NN

=
1

4

(

sk0
0N

+ sk3
00 + sk4

N0 + sk5
NN

)

. (68)
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Along the interface between two spectral subdomains, the values at the shared side
are computed similarly by assigning the average of the two values of the connected
subdomains at all collocation points. Consider the interface between the two spectral
subdomains S1 − S2 (the rightmost figure of Figure 13),

sk0
0j

= sk5
Nj

=
1

2

(

sk0
0j

+ sk5
Nj

)

, j = 0, . . . , N. (69)

The other spectral subdomains’ corners and sides are treated similarly.
Note 8.1. In case of adjacent subdomains with different numbers of collocation points,
global interpolation can be used before averaging.
Note 8.2. An exact Riemannn solver and penalty interface conditions had been tried
but no discernible differences were observed from the simple average.

WENO-WENO Interface

To maintain conservation, adjacent WENO subdomains are required to have the same
spacing ∆x (see [28]). This implies that ghost points of a WENO subdomain match
the interior points of the neighboring WENO subdomain (see Figure 14). Thus, simple
copying of the solution values of the neighboring interior points to the ”Ghost Area”
is sufficient for the communication of WENO subdomains.

W
1

W
2

W
3 W

4

W
1

W
2

W
1

W
4

Fig. 14. (Left) WENO-WENO-WENO-WENO subdomain configuration. (Middle) W 1−W 2

Interface. (Right) W 1 − W 4 Interface.

For instance the middle figure of Figure 14 shows two ”Ghost Zones”: The zone in the
solid rectangle corresponds to the ”Ghost Zone” Gk

5 of W 1; and the zone in the dash-
dotted rectangle corresponds to the ”Ghost Zone” Gk

1 of W 2 (see 65). In this case, by
denoting N = NW and using W 1 as a reference subdomain (subdomain k = k0)

wk0
(N+l)j

= wk5
lj

, wk5
−lj

= wk0
(N+1−l)j

, j = −r, . . . , N + r, l = 1, . . . , r, (70)
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where r is the number of ghost points.
Note 8.3. In general the number of ”ghost” points in each subdomain does not have
to be the same as long as the same grid spacing ∆x is used at all the neighboring
subdomains.

Spectral-WENO Interface

Spectral-WENO interface can be found in the configurations shown in Figure 15.

S
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W
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W W

S
1

2 4

2

Fig. 15. Subdomain Configurations: (Left) Spectral-Spectral-Spectral-WENO. (Middle)
Spectral-Spectral-WENO-WENO. (Right) Spectral-WENO-WENO-WENO.
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Fig. 16. (Left) Spectral-Spectral-Spectral-WENO subdomain configuration. (Middle)
S3 − W 4 Interface. (Right) S1 − W 4 Interface.

The ”Ghost Zones” Gk

2 , G
k

7 and Gk

8 of the WENO subdomain lie in the three neighbor-
ing spectral subdomains as shown in Figure 15. The ”Ghost Area” points of WENO
subdomains are computed via spectral interpolations. To be more specific, referring
to the middle figure of Figure 16, the solution in the area of the intersection of S3

(subdomain k) and W 4 (subdomain k5) corresponding to the ”Ghost Zone” Gk

1 in
(65) (see also Figure 12) is read using the interpolating polynomial representing the
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solution in S3, that is, at the subdomain k,

w(xn, ym) =
NS
∑

j=0

NS
∑

i=0

sijli(xn)lj(ym), m = 0, . . . , NW , n = −r, . . . ,−1, (xn, ym) ∈ k5,

(71)
where sij are the functional values in S3 (subdomain k), li(x) and lj(y) are Lagrangian
interpolation polynomials of degree NS. The ghost points for the other two configu-
rations can be obtained in a similar way.

The interface points of the spectral subdomain are computed via a two dimensional
interpolation polynomial of degree r = nW . The choice of stencils {(xi, yj), i = −i0 −
r/2, . . . , i0 + r/2, j = j0 − r/2, . . . , j0 + r/2} for the interpolation polynomial should
be as symmetric about a given point (xi0 , yj0) as possible.

8.3 The Switching Algorithm

In this section we describe the algorithm used to switch the subdomains spatial dis-
cretizations as indicated by the Multi-Resolution Analysis of Section 7. The following
three conditions are the main rules to be followed:

(1) If a subdomain contains high gradients, then switch its spatial discretization to
(or keep it with) WENO;

(2) If high gradients are present in the ”Buffer Areas” of connected neighboring
subdomains, then switch the current subdomain to (or keep it as) a WENO
subdomain;

(3) In any other case, switch the subdomain to (or keep it as) a spectral subdomain;

The first condition above avoids the Gibbs phenomenon, keeping the discontinuities
inside WENO subdomains. The second condition ensures the switch to WENO sub-
domain in order to allow only WENO-to-WENO transmission of discontinuities. The
third condition improves the numerical efficiency, since it ensures that smooth parts
of the solution will always be contained in spectral subdomains.

Multi-Resolution analysis of the solution is performed at every sub-stage of the third
order TVD Runge-Kutta scheme used for the temporal evolution. At each subdomain
k, we define the smoothness flag variable, Flagk

ij, at each grid point (xi, yj) including
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the ghost points, as ,

Flagk

ij =











1, |dk

ij| > εMR for (xi, yj) ⊆ Ik
⊕

Bk

l l = A, . . . ,H

0, otherwise
. (72)

where dk

ij are the MR coefficients. Since the Multi-Resolution Analysis requires uni-
formly spaced grids, the spectral grids are first interpolated to uniformly spaced grids
before obtaining the MR coefficients dk

ij. The necessary ghost points are acquired from
the neighboring subdomains. At the boundary subdomains, the value of the boundary
ghost points are extrapolated linearly from the interior data.

The algorithm proceeds by checking for each subdomain k and at the buffer zones of
the neighboring subdomains if Flagk

ij is equal to one. If so, it switches subdomain k to

a WENO discretization. On the other hand, if Flagk

ij is identically zero, then a spectral
discretization is implemented, or kept. These switches require the use of interpolation
from a Chebyshev grid of points to a uniformly spaced one and vice-versa:

• To switch from the spectral subdomain to the WENO subdomain, the data are
interpolated onto the uniformly spaced grid via the spectral interpolation formula.

• To switch from the WENO subdomain to the spectral subdomain, the data are
interpolated onto the Chebyshev Gauss-Lobatto points via the Lagrangian inter-
polation polynomial of the same order as the WENO method.

Back and forth switching between WENO and spectral discretizations may occur too
frequently for the same domain when the εMR is marginally set. The dk

ij coefficients
might oscillate around the parameter εMR in time due to some numerical factors
such as dissipation, dispersion and nonlinear effects, or any combination of such. This
pattern of switching can repeat itself for a while until the solution settles down with a
clear definition of the dk

ij, which is either greater than or smaller than the MR tolerance
εMR. In order to alleviate such occurrences, one must devise a procedure preventing
the switch from WENO to spectral if it had already occurred recently. However,
the procedure must never prevent a spectral to WENO switch, for oscillations and
instability might occur.
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9 Numerical Results

In this section, we apply the hybrid method to two well-known problems in Conserva-
tion Laws: The Shock-Vortex Interaction and the Richtmyer-Meshkov Instability. The
governing equations are the two-dimensional Euler equations in Cartesian coordinates
given by:

Qt + Fx + Gy = 0, (73)

where

Q=(ρ, ρu, ρv, E)T ,

F=
(

ρu, ρu2 + P, ρuv, (E + P )u
)

T

, (74)

G=
(

ρv, ρuv, ρv2 + P, (E + P )v
)

T

,

and the Equation of state

P = (γ − 1)(E + 1
2
ρ
(

u2 + v2
)

), γ = 1.4. (75)

We will restrict the following study to rectangular domains, which will be partitioned
into an equal number of subdomains in both x and y directions. The number of
Chebyshev collocation points for all spectral subdomains will be the same in both x
and y directions, as well as the number of uniformly spaced grid points for the WENO
subdomains. The order of the Multi-Resolution Analysis is the same as the WENO
scheme, nMR = nW . A 14 th order Exponential filter and Kosloff-Tal-Ezer mapping are
employed in all spectral subdomains. Free stream boundary conditions are imposed
in the inflow and outflow in the x direction and periodical boundary condition is
imposed in the y direction. To evolve the ODE from the semi-discretized PDE in
time, the third order Total Variation Diminishing Runge-Kutta scheme (RK-TVD)
will be used [4]:

~U1 = ~Un + ∆tL(~U)n

~U2 =
1

4

(

3~Un + ~U1 + ∆tL(~U1)
)

, (76)

~Un+1 =
1

3

(

~Un + 2~U2 + 2∆tL(~U2)
)

where L is the spatial operator. The CFL numbers for the spectral and WENO
subdomains are set to be 3 and 0.4, respectively. All numerical experiments were run
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on a 667 MHz Compaq Alpha machine with 1GB memory and with an Alpha internal
floating point processor.

9.1 Shock – Vortex Interaction

The tangential velocity profile of the counter-clockwise rotating vortex [21] centered
at (xc, yc) and strength Γ is given in polar coordinates by:

U(r) =



























Γr(r−2
0 − r−2

1 ) 0 ≤ r ≤ r0 < r1

Γr(r−2 − r−2
1 ) r0 ≤ r ≤ r1

0 r > r1

, (77)

where r0 = 0.2 and r1 = 1.0.

Due to the strong nonlinearity of the shock-vortex interaction its physics are not
well understood. A better understanding will have many potential applications, for
instance, subsonic and supersonic jet nozzle design and blade noise generation. The
Hybrid method will be tested on this problem with a vortex of amplitude Γ = 0.25
and shock Mach numbers Ms = 1.25, 3, 6.

Mach 1.25

In this first example, the physical domain (0 ≤ x ≤ 3.9,−2 ≤ y ≤ 2) is partitioned
into a 13×10 grid of subdomains. Spectral subdomains use a 32×32 grid of Chebyshev
points and WENO grids are 50×50. MR analysis is performed with the MR tolerance
set to εMR = 5 × 10−2.

When an initially planar shock wave hits the vortex, it deforms as compression
and rarefaction regions are created behind the shock, as shown in Figure 17 for
t = 0.732, 1.08, 1.2. As the interaction proceeds over time, strong bifurcation and
deformation of the shock are observed. The shock emanating from the compression
region has one part moving upward and another moving downward. The strength of
the lower upward moving part is greater, due to the direction of rotation of the vor-
tex. MR Analysis performed well in capturing the shock and the high gradient regions
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(a) t = 0.73 (b) t = 1.08 (c) t = 1.20

Fig. 17. Density ρ of the Shock-Vortex interaction with Mach number Ms = 1.25 and
Γ = 0.25 at (a) t = 0.73, (b) t = 1.08 and (c) t = 1.2, as computed by the Hybrid method.

immediately behind the shock, as indicated by the WENO subdomains enclosed with
black bounding boxes. The remaining subdomains are accurately dealt with by the
spectral methods. The number of WENO subdomains is far fewer than spectral ones
resulting in a more efficient algorithm than the classical WENO scheme.

Mach 3

We now increase the Mach number of the shock from Ms = 1.25 to Ms = 3 and
compare the solution of the Hybrid scheme with a highly resolved one computed with
the classical fifth order WENO scheme using 1200×1200 points. The physical domain
(0 ≤ x ≤ 3.0,−2 ≤ y ≤ 2) is partitioned into a 10 × 10 grid of subdomains and all
other parameters are as in Example 1.

As in the previous example, an acoustic wavefront is generated and a number of fine
scale structures are formed behind the main shock. This example indicates that the
Hybrid method captures the fine features of the solution even in the case of strong
shocks.
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(a) t = 0.35, Hybrid Scheme (b) t = 0.60, Hybrid Scheme
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(c) t = 0.35, WENO5 Scheme (d) t = 0.60, WENO5 Scheme

Fig. 18. Density ρ of the Shock-Vortex interaction with Mach number Ms = 3 and Γ = 0.25
at time (a) t = 0.35 and (b) t = 0.6 as computed by the Hybrid scheme and (c) t = 0.35
and (d) t = 0.6 as computed by the classical fifth order WENO finite difference scheme
(WENO5) with 1200 × 1200 grid points.

Mach 6

In this last example, we further increase the shock Mach number to Ms = 6 and use
a 19 × 20 grid of subdomains to partition the physical domain (0 ≤ x ≤ 4.2,−3 ≤
y ≤ 3). The spectral grid is 16 × 16. This example shows that the Hybrid method
can be applied to higher Mach number flows as well, still resulting on a reliable and
efficient shock-capturing method.

52



x

y

1 2 3 4

-1

-0.5

0

0.5

1

1.5

x

y

1 2 3 4

-1

-0.5

0

0.5

1

1.5

(a) t = 0.3 (b) t = 0.4

Fig. 19. Density ρ of the Shock-Vortex interaction with Mach number Ms = 6 and Γ = 0.25
at time (a) t = 0.3 and (b) t = 0.4 as computed by the Hybrid method.

9.2 Two-dimensional Richtmyer-Meshkov Instability

Richtmyer in 1960 [26] theoretically predicted the occurrence of instability on a per-
turbed material interface under the impulsive acceleration of an incident shock wave.
In 1970 Meshkov [24] experimentally confirmed these predictions. A variety of mo-
tions can be generated following the interaction of a shock wave with an interface
separating two materials. Any small perturbation present on the interface will be
amplified after such a contact. This class of problems is referred in the literature as
the ”Richtmyer-Meshkov Instability (RMI)”. As the interface between two materi-
als becomes increasingly distorted other instabilities such as the Kelvin-Helmholtz
Instabilities develop and a region of turbulence mixing ultimately results. The RMI
arises in many applications as, for instance, the Inertial Confinement Fusion (ICF)
process. A recent model under extensive study consists of a set of laser beams directed
into a chamber containing a spherical fusion fuel target. The expected result should
be compression, ignition and a subsequent energy surplus. However, since no perfect
capsule exists, irregularities on the surface excite the undesirable RMI, reducing the
effective uniform compression pressure onto the capsule.
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Xenon Argon

Xenon - Argon Interface

1) Rankine-Hugoniot condition for shocks
2) Pre-Shock Temperature T = 296 K
3) Pre-Shock Pressure P = 0.5 atm

4) Xenon density ρXe = 2.90 × 10−3 g
cm3

5) Argon density ρAr = 0.89 × 10−3 g
cm3

6) Specific heat ratio γ = 5
3

7) Atwood number At = 0.54
8) Mach number M = 4.46
9) Wave Length λ = 3.6cm
10)Amplitude a = 1.0cm

Fig. 20. Initial Condition for the Richtmyer-Meshkov Instability simula-
tion.
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Regions of Interest :
1) Reflected shock generated by the shock

refraction;
2) The penetration of the heavy (Xe) to light

(Ar) gas forms the Spike;
3) Triple point on the transmitted shock;
4) A small jet and its vortical structure;
5) The penetration of the light (Ar) to heavy

(Xe) gas forms the Bubble;
6) Vortical rollups of the gaseous interface.

Fig. 21. Typical regions of interest for the simulation of the RMI at time t = 50µs. Only
the lower half of the interface is shown.

Presently, a rectangular domain with a shock Mach number Ms interacting with
a single mode sinusoidal perturbation along a Xenon (Xe) and Argon (Ar) gases
interface is simulated using the Hybrid method. The initial condition is given in
Figure 20 and a diffusive interface is modeled with an exponential function, i.e.

S(x, y) =



























1 d ≤ 0

exp(−α|d|β) 0 < d < 1,

0 d ≥ 1

(78)

where

d =
(xs + a cos(2πy/λ) + δ) − x

2δ
, (79)
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δ = 0.2cm > 0 is the interface thickness, β = 8 is the interface order, xs = 0.5cm
is the location of the interface and α = − ln ε, where ε is the machine zero. The
conservative or primitive variables are scaled according to the S(x, y) between the
Xenon and Argon gases.

As the shock wave collides with the interface separating the two gases, the sine wave
perturbation is accelerated, compressed and amplified following the refraction of the
shock. The heavier Xenon gas (Xe) will penetrate into the lighter Argon gas (Ar)
forming finger-like structures – bubbles and spikes. A bubble (spike) is a portion of
the light (heavy) gas penetrating into the heavy (light) gas. Some of these interesting
fluid structures such as the bubbles, the spikes, the interfacial mixing region and the
vortical rollup can be observed at the earlier time as depicted in Figure 21.

The basic mechanism of these instabilities is the baroclinic generation of vorticity ~ω
induced from the misalignment of the pressure gradient ∇p of the shock and the local
density gradient ∇ρ across the interface:

∂~ω

∂t
∼ ∇p ×∇ρ, ~ω = ∇× ~u, (80)

where ~u is the velocity.

Mach 4.46

In this example, the physical domain (0 ≤ x ≤ 5.1, 0 ≤ y ≤ λ) is partitioned into a
17× 12 grid of subdomains. The spectral grids are 32 × 32 and the WENO grids are
50 × 50. The MR tolerance is now lowered to εMR = 5 × 10−5. Once again, as seen
in Figure 22, the WENO method is activated only along the material interface and
where high gradients appear.

Mach 8

The physical domain (0 ≤ x ≤ 24.6, 0 ≤ y ≤ λ) is partitioned into a 82 × 12 grid of
subdomains in order to apply the Hybrid method for a longer time integration up to
t = 100µs. The shock Mach number is increased from Ms = 4.46 to Ms = 8 and the
spectral grid is set to 24 × 24.
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Fig. 22. Contour plot of the density ρ with Ms = 4.46, λ = 3.6cm, a = 1cm at time (a)
t = 12.5µs, (b) t = 25.0µs, (c) t = 37.5µs and (d) t = 50.0µs of the Richtmyer-Meshkov
Instability as computed by the Hybrid scheme.

It can be observed in Figure 23 that the Hybrid method successfully tracks shocks and
high gradients with WENO discretization (black bounding boxes) while the smooth
parts of the solution are well represented using spectral subdomains.
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Fig. 23. Contour plot of the density ρ with Ms = 8, λ = 3.6cm, a = 1cm at time (a)
t = 18.5µs, (b) t = 52.0µs, (c) t = 100.0µs and (d) t = 100.0µs with zoom of the
Richtmyer-Meshkov Instability as computed by the Hybrid scheme.

9.3 CPU Timing

The Hybrid method has the potential advantage of being faster than the classical
WENO method due to the higher numerical efficiency of spectral methods at smooth
parts of the solution. Moreover, spectral discretizations avoid the expensive character-
istic decompositions and projections of the WENO method. In this section, we provide
some CPU timing results for the Mach 3 Shock-Vortex Interaction (see section 9.1)
when using the Hybrid and the classical WENO methods with equal resolution.
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The physical domain is partitioned into a set of subdomains of sizes ((10×2j)× (10×
2j)), j = 0, 1, 2, 3. Spectral subdomains use a 12 × 12 grid of Chebyshev points and
WENO ones use 20 × 20 grids of uniformly spaced points. The classical fifth-order
WENO method, here denoted WENO5, uses the corresponding number of grid points
as if all the subdomains in the Hybrid method were WENO subdomains. The MR
tolerance used is εMR = 5 × 10−2.

Number of subdomains Grid size Hybrid S12W20 WENO5 Speedup

10x10 200x200 265 282 1.06

20x20 400x400 2009 2762 1.37

40x40 800x800 14410 26090 1.81

80x80 1600x1600 112900 253996 2.24

Table IX
CPU timing in seconds and speedup factor for the Shock-Vortex problem at time t = 0.6
as computed by the Hybrid (with constant εMR = 5 × 10−2) and the WENO5 methods.

Table IX shows that a significant speed up is achieved when using the Hybrid method
over the classical WENO5 for increasing resolution. Figure 24 shows the history of
the coverage of the WENO subdomains as a percentage of the total number of the
subdomains. This percentage varies between 10% − 20% for the 10 × 10 subdomain
partition and gets proportionally smaller by a factor of 2 when the number of subdo-
main partition increases by a factor of 2 in each direction.
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Fig. 24. The time history of the coverage of the WENO subdomains as a percentage
of total number of subdomains for the four subdomain partitions: (from left to right)
(10 × 10), (20 × 20), (40 × 40), (80 × 80).

Reducing the MR Tolerance level of last experiment to εMR = 5×10−3, while keeping
all the other parameters fixed, leads to a slight increase on the CPU time usage for
the Hybrid method as compared with the previous case, as shown in Table X. With
a lower MR tolerance, more subdomains are classified as containing high gradients.
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Number of subdomains Grid size Hybrid S12W20 WENO Speedup

10x10 200x200 332 282 none

20x20 400x400 2239 2762 1.23

40x40 800x800 15580 26090 1.67

Table X
CPU timing in seconds and speedup factor for the Shock-Vortex problem at time t = 0.6
as computed by the Hybrid (constant εMR = 5 × 10−3) and WENO5 methods.
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10 High Order Simulation of the Richtmyer-Meshkov Instability

We also, in collaboration with Dr. Oleg Schilling at the Lawrence Livermore National
Laboratory (LLNL) pursuing the investigation of the high order WENO methods
for the three dimensional Richtmyer-Meshkov Instability. We have recently extended
the Euler Equation to the full Navier-Stokes equation with multiple species in two
and three dimensions. We are also in the process of implementing a full turbulence
analysis routines for real time data extraction and analysis.

A systematical and self-consistent study was conducted to validate the WENO meth-
ods for the RMI problems with reshock against the Mach 1.21 shock tube experiments
of Collins and Jacobs. The qualitative comparison above shows that it is possible
to achieve very good agreement between a two-dimensional, high-resolution shock-
capturing simulation with high-order flux reconstruction and experimental density
PLIF images. The simulations at 5 and 6 ms demonstrates that higher-order recon-
struction better captures secondary instabilities on the interface and within the vortex
cores. The reshock takes place at about t = 5.75 ms. In addition, the roll-ups in the
simulation appear tighter and sharper, and more fine-scale structures are present.
The fields from the numerical simulations also supplement the experimental images
by displaying the shock focusing observed during the reshock process. This results in
the formation and persistence of large-scale structures in the simulations, consistent
with the inverse cascade of kinetic energy from small scales to larger scales observed
in experiments and simulations of two-dimensional turbulence.

As the results of this study, we have published three papers in the Physics of Fluids,
Journal of Computational Physics and Physics Review E. More details can be found
in those publications.
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11 Galerkin Method for Wave Equations with Uncertain Coefficients

In recent years there is a growing interests in studying efficient numerical methods for
solving differential equations with random inputs. The Polynomial Chaos (PC) based
methods have received intensive attention. The original PC method was developed by
R. Ghanem, cf. [11], and was inspired by the Wiener chaos expansion which uses Her-
mite polynomials of Gaussian random variables to represent random processes [31].
Later the approach was extended to generalized Polynomial Chaos (gPC) where gen-
eral orthogonal polynomials are adopted for improved representations of more general
random processes [32]. With PC/gPC serving as a complete basis to represent random
processes, a stochastic Galerkin projection can be used to transform the (stochastic)
governing equations to a set of deterministic equations that can be readily discretized
via standard numerical techniques. Although such a Galerkin approach is effective
in many problems, cf. [10,?], its application to hyperbolic problems has been limited
as of now. We believe that the primary reason is that the properties of the system
of equations resulting from a Galerkin projection is not fully understood. (When the
uncertainty does not change the direction of the characteristics, the Galerkin system
can be shown to be hyperbolic and solved in a straightforward manner [3].)

We discuss in this paper the application of the gPC Galerkin method to the simula-
tions of hyperbolic systems that contain uncertainties. In general these uncertainties
may enter through initial conditions, boundary conditions or through uncertainties
in the coefficients of the problem. Here we deal with the case that the coefficients are
functions of random variables. In particular we use a scalar wave equation as a model
and study the situation in which the inflow-outflow conditions change as a function
of a random variable. The problem is whether it is possible to impose boundary con-
ditions on the deterministic system, consistent with the boundary conditions of the
original equation.

We show, in this paper, that the deterministic system is a symmetric hyperbolic
system with positive as well as negative eigenvalues. A consistent and stable method
of imposing the boundary conditions is outlined. The boundary conditions are not
satisfied exactly at the boundaries but rather to the order of the scheme. Convergence
of the scheme is established.

The paper is organized as following. In Section 12 we present the model problem of a
scalar hyperbolic equation where the wave speed is a random variable. A consistent
set of boundary conditions are presented for the deterministic system resulted from a
gPC Galerkin procedure, and we prove convergence of the scheme. In Section 13 we
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present numerical results to support the theory.

12 Model problem: Scalar Wave Equation with Uncertainty

A simple scalar equation that illustrates the difficulties in applying the (generalized)
Polynomial Chaos to hyperbolic equations is:

∂u(x, t, y)

∂t
= c(y)

∂u(x, t, y)

∂x
, x ∈ (−1, 1), t > 0, (81)

where c(y) is a random transport velocity of a random variable y ∈ Ω in a properly
defined complete random space with event space Ω and probability distribution func-
tion ρ(y). With this the expectation of a given function is E[f(y)] =

∫

f(y)ρ(y)dy. At
this stage we would like to mention that we can consider (81) as a system where c is
a symmetric matrix and obtain similar results. For simplicity we stay with the exam-
ple above to highlight the fundamental properties. The physical domain is bounded,
(−1, 1) upon proper scaling, so that we can study the effects of boundary conditions.

The initial condition is given by

u(x, 0, y) = u0(x, y). (82)

The boundary conditions are more complicated as they depend on the sign of the
random transport velocity c(y). A well posed set of boundary conditions is given by:

u(1, t, y)= uR(t, y), c(y) > 0,

(83)

u(−1, t, y)= uL(t, y), c(y) < 0.

Equations (81)–(83) complete the setup of the problem.
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12.1 Polynomial Chaos Galerkin Approach

Following the standard gPC expansion, we assume that u(x, t, y) is sufficiently smooth
in y and has a converging expansion of the form

u(x, t, y) =
∞
∑

k=0

ûk(x, t)Pk(y), (84)

where the polynomials Pk(y) correspond the distribution of the random variable y
and satisfy the following orthogonality relation

E[PkPl] =
∫

Pk(y)Pl(y)ρ(y)dy = δkl, ∀k, l, (85)

where δkl is the Kronecker delta function. Note the polynomials are normalized. The
commonly seen correspondences between the polynomials Pk(y) and the distribu-
tion of the random variable y include Hermite-Gaussian (the original PC expansion),
Legendre-uniform, Laguerre-Gamma, etc., cf, [32,?]. For simplicity we will discuss
in this paper the case of random variable y with beta distribution in (−1, 1) (upon
proper scaling). In this case the expansion functions Pk are the (normalized) Jacobi
polynomials. (Note this includes the special case of Legendre polynomials with uni-
formly distributed random variable y.) For the converged series (84), we also assume
that the expansion coefficients decay fast asymptotically, i.e.,

‖ûj(x, t)‖2
1 ≤

K

j2m
, j � 1, (86)

where K, m > 0 are constants and the ‖ · ‖1 norm is defined as

‖ûj(x, t)‖2
1 =

∫ 1

−1



û2
j +

(

∂ûj

∂x

)2


 dx. (87)

We also use ‖ · ‖2 to denote the standard L2 norm, i.e., ‖f(x)‖2
2 =

∫ 1
−1 f 2(x)dx.

By utilizing the expansion (84) and employing a Galerkin projection, it is straight-
forward to verify that the coefficients ûj(x, t) satisfy the following infinite system of
equations

64



∂ûj(x, t)

∂t
=

∞
∑

k=0

aj,k
∂ûk(x, t)

∂x
j = 0, . . . ,∞ (88)

aj,k =
∫ 1

−1
c(y)Pj(y)Pk(y)ρ(y)dy. (89)

The equations for the first (N + 1) coefficients can be written as

∂ûj(x, t)

∂t
=

N
∑

k=0

aj,k
∂ûk(x, t)

∂x
+

∞
∑

k=N+1

aj,k
∂ûk(x, t)

∂x
, j = 0, . . . , N. (90)

In the gPC Galerkin method we seek an approximation to the true solution via a
finite-term gPC expansion

v(x, t, y) =
N
∑

k=0

v̂k(x, t)Pk(y) (91)

and project

∂v(x, t, y)

∂t
− c(y)

∂v(x, t, y)

∂x
= 0

onto the subspace spanned by the first (N +1) gPC basis polynomials and obtain the
following system

∂v̂j(x, t)

∂t
=

N
∑

k=0

aj,k
∂v̂k(x, t)

∂x
, j = 0, . . . , N, (92)

where aj,k are defined as in (89). If we denote by A the (N + 1) × (N + 1) matrix
whose entries are {aj,k}0≤j,k≤N and v = (v̂0, · · · , v̂N)T a vector of length (N +1), then
system (92) can be written as

∂v(x, t)

∂t
= A

∂v(x, t)

∂x
. (93)

Note that from the definition aj,k = ak,j, i.e., A = AT , the system (93) is therefore
symmetric hyperbolic, this is consistent with the fact that the original equation (81)
is hyperbolic for each realization of y.
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12.2 Eigenvalues of the PC Galerkin Equations

A less trivial question is the nature of the inflow-outflow boundary conditions. The
boundary conditions for the original scalar equation (81) depend on the particular
realization of the random variable y (see (83)). However upon the Galerkin projection
in the random dimension the deterministic system (93) is independent of y. In The-
orem 1 we investigate how the inflow-outflow conditions are reflected in the system
(93).

Theorem 1:

Consider the deterministic system (93) where the coefficients are defined in (89). Then
if c(y) ≥ 0 (reps. c(y) ≤ 0) for all y, then the eigenvalues of A are all non-negative
(reps. non-positive); if c(y) changes sign, i.e., c(y) > 0 for some y and c(y) < 0 for
some other y, then A has both positive and negative eigenvalues for sufficiently large
N .

Proof:

First let us consider the case of c(y) ≥ 0.

Let β(y) be a random variable with an expansion β(y) =
∑N

k=0 bkPk(y). Let b =
(b0, · · · , bN)T be the coefficient vector with length (N +1). Note here b is an arbitrary
vector. Then

bTAb=
N
∑

j=0

N
∑

k=0

bjaj,kbk

=
N
∑

j=0

N
∑

k=0

bj

(∫ 1

−1
c(y)Pj(y)Pk(y)ρ(y)dy

)

bk

=
∫ 1

−1
β2(y)c(y)ρ(y)dy.

Since c(y) is non-negative

bTAb ≥ 0
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for all b, thus all the eigenvalues of A are non-negative. The case of c(y) ≤ 0, ∀y
follows similarly.

A more interesting case is when c(y) changes sign. Let us devide the domain Ω where
y belongs into the following non-overlapping open sets: Ω+ = Ω1 ∪ Ω2 be defined as
the subdomain of y where c(y) > 0 and Ω3 is the subdomain of y in which c(y) ≤ 0.
Let us also define γ(y) be a smooth function such that

γ(y) > δ, y ∈ Ω1, (94)

0 < γ(y)≤ δ, y ∈ Ω2, (95)

γ(y) = 0, y ∈ Ω3. (96)

Let βN(y) be the best polynomial approximation of degree N to
√

γ(y) such that

max
y

|β2
N(y) − γ(y)| ≤ ε, (97)

where N is sufficiently large such that

ε < δ

∫

Ω1
c(y)ρ(y)dy

∫

Ω |c(y)|ρ(y)dy
. (98)

Then

∫

Ω
β2

N(y)c(y)ρ(y)dy =
∫

Ω+
γ(y)c(y)ρ(y)dy +

∫

Ω+
(β2

N(y) − γ(y))c(y)ρ(y)dy

+
∫

Ω3

β2
N(y)c(y)ρ(y)dy

≥
∫

Ω1

γ(y)c(y)ρ(y)dy −

∣

∣

∣

∣

∫

Ω+
(β2

N(y) − γ(y))c(y)ρ(y)dy

∣

∣

∣

∣

−
∣

∣

∣

∣

∫

Ω3

β2
N (y)c(y)ρ(y)dy

∣

∣

∣

∣

.

Now
∣

∣

∣

∣

∫

Ω3

β2
N(y)c(y)ρ(y)dy

∣

∣

∣

∣

≤ ε
∫

Ω3

|c(y)|ρ(y)dy

and
∣

∣

∣

∣

∫

Ω+
(β2

N (y) − γ(y))c(y)ρ(y)dy
∣

∣

∣

∣

≤ ε
∫

Ω+
|c(y)|ρ(y)dy

and therefore
∫

Ω
β2

N (y)c(y)ρ(y)dy > 0
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under the condition (98). Thus there exists a polynomial βN(y) with expansion co-
efficients b = (b0, · · · , bN )T such that bT Ab is positive. Similarly, if c(y) is negative
in a subinterval there exists a polynomial βN(y) with sufficiently large N such that
∫ 1
−1 β2

N(y)c(y)ρ(y)dy is negative. Thus the matrix A has positive and negative eigen-
values. This concludes the proof.

12.3 Boundary Conditions and Convergence

We now turn to the issue of imposing the boundary conditions. Since A is symmetric
there is an orthogonal matrix ST = S−1 such that

STAS = Λ,

where Λ is a diagonal matrix whose entries on the eigenvalues of A, i.e.,

Λ = diag(λ0, . . . , λj+, . . . , λj
−

, . . . , λN).

Here the positive eigenvalues occupy indices j = 0, . . . , j+, the negatives ones j =
j−, . . . , N , and the rest, if exist, are zeros. Obviously, j+, j− ≤ N .

Denote by q = (q0, . . . , qN)T = ST v, i.e.,

qj(x, t) =
N
∑

k=0

sk,jv̂k(x, t),

where sj,k are the entries for S, then we obtain

∂q(x, t)

∂t
= Λ

∂q(x, t)

∂x
. (99)

The boundary conditions of this diagonal system are determined by the sign of the
eigenvalues, i.e., we need to specify

qj(1, t) =
N
∑

k=0

sk,jûk(1, t), j = 0, . . . , j+,

(100)

qj(−1, t) =
N
∑

k=0

sk,jûk(−1, t), j = j−, . . . , N.
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Here the coefficients ûk at the boundaries are determined by the exact gPC projection
of the boundary conditions of u, i.e.,

uR(t, y)=
∞
∑

j=0

ûk(1, t)Pk(y),

uL(t, y)=
∞
∑

j=0

ûk(−1, t)Pk(y).

Subsequently the boundary conditions for the gPC Galerkin system of equations (93)
are specified as

v(1, t) = Sq(1, t), v(−1, t) = Sq(−1, t). (101)

Note the above specification of boundary conditions via (100) and (101) implicitly
satisfy the following relation

N
∑

k=0

sk,jv̂k(1, t)=
N
∑

k=0

sk,jûk(1, t), j = 0, . . . , j+,

N
∑

k=0

sk,jv̂k(−1, t)=
N
∑

k=0

sk,jûk(−1, t), j = j−, . . . , N.

For vanishing eigenvalues, if they exist, no boundary conditions are required.

Theorem 2

Consider the hyperbolic equation equation (81) where y is a random variable with
beta distribution in (−1, 1). Let u(x, t, y) be the solution of (81) whose exact gPC
expansion is (84) and let v(x, t, y) be the (N + 1)-term gPC solution (91) solved via
the Galerkin system (93) with boundary conditions given in (101). Then for any finite
time t

E

[

‖u − v‖2
2

]

=
N
∑

j=0

(∫ 1

−1
(ûj(x, t) − v̂j(x, t))2dx

)

≤
K

N2m−1
t. (102)

Note the linear growth in time.

Proof

69



Let

ej(x, t) = ûj(x, t) − v̂j(x, t), j = 0, . . . , N.

¿From (90) and (92) we have

∂ej(x, t)

∂t
=

N
∑

k=0

aj,k
∂ek(x, t)

∂x
+

∞
∑

k=N+1

aj,k
∂ûk(x, t)

∂x
, j = 0, . . . , N. (103)

Denote by e = (e0, ..., eN)T and let d = STe, then we obtain

∂d

∂t
= Λ

∂d

∂x
+ R, (104)

where the residual vector R = (R0, · · · , RN)T is

Rj(x, t) =
N
∑

l=0

∞
∑

k=N+1

sl,jak,l
∂ûk

∂x
. (105)

By multiplying (104) by dT and integrating in x one gets

1

2

d

dt

∫ 1

−1
dT ddx =

1

2

N
∑

j=0

λj

(

d2
j(1, t) − d2

j(−1, t)
)

+
∫ 1

−1
dTRdx (106)

¿From the boundary conditions (101) it follows that if λj > 0 then dj(1, t) = 0 and
if λj < 0 then dj(−1, t) = 0. Thus the first term in the right hand side of the above
equation is negative. This leads to

1

2

d

dt

∫ 1

−1
dT ddx ≡

1

2

d

dt
‖d‖2 ≤ ‖d‖ · ‖R‖,

where

‖R‖2 =
N
∑

j=0

∫ 1

−1
R2

j(x, t)dx

and ‖d‖ is defined similarly.

Thus
d

dt
‖d‖ ≤ ‖R‖
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and

‖d(x, t)‖ ≤ max
t≥0

‖R‖ · t

Since the matrix S is unitary and the elements of the matrix A are bounded then

‖R‖2 ≤
∞
∑

j=N+1

‖ûj‖
2
1 (107)

and the proof is established under assumption (86).

13 Numerical Results

In this section we present a few numerical examples to support the theoretical results
derived above. In all of the following computations, we have used sufficiently fine
resolutions in physical space and time domain, such that the spatial and temporal
errors are negligible. In all computations, y is a random variable uniformly distributed
in (−1, 1) and thus Pk(y) are (normalized) Legendre polynomials.

13.1 Periodic Problem

We first consider problem (81) with a periodic boundary condition in physical space.
Subsequently the gPC Galerkin system (93) requires periodic boundary conditions
that can be trivially implemented. Therefore no errors will be induced by specifying
boundary conditions via (101). Let us consider

ut(x, t, y) = yux(x, t, y), 0 < x < 2π, t ≥ 0,

u(x, 0, y) = cos(x), 0 < x < 2π,
(108)

The exact solution is uex = cos(x−yt). In Figure 25 we plot the evolution of the mean
square solution E[‖u‖2

2] =
∫ ∫ 1

−1 u2(x, t, y)ρ(y)dydx and its numerical solution via gPC
Galerkin method. We observe that there is a finite time where the numerical solutions
lose accuracy, i.e., errors become O(1). The size of the time domain in which the errors
remain small grows almost linearly as the orders of gPC expansion are increased.
This observation can be cross-examined by comparing the mean-square errors at
different time level, as shown in Figure 26. We observe that with sufficiently high
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orders of gPC expansions, exponential error convergence can be achieved. However,
as time increases, the critical orders of expansions, beyond which errors start to
decay exponentially fast, increase linearly. All of these results support the convergence
analysis (102) where a linear error growth in time exists.
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Fig. 25. Evolution of errors in mean-square norm over time.

13.2 Boundary Conditions and Discontinuity in Random Space

We now study a wave equation with a random wave speed that changes signs and
also contains a discontinuity in the random space

ut = c(y)ux, −1 ≤ x ≤ 1, t > 0,

u(x, 0, y) = sin(κx), −1 ≤ x ≤ 1, y > 0,

u(x, 0, y) = sin(2κx), −1 ≤ x ≤ 1, y < 0.

(109)
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Fig. 26. Convergence of mean-square errors with increasing orders.

Here c(y) = σy with 0 < σ < 1 controlling the variability of the random input and
κ > 0 is a real constant. We prescribe boundary conditions as

u(1, t, y) = sin[κ(1 + c(y)t)], y > 0,

u(−1, t, y) = sin[2κ(−1 + c(y)t)], y < 0.
(110)

The exact solution of (109)–(110) is ue(x, t, y) = sin[κ(x + c(y)t)] for y > 0 and
ue(x, t, y) = sin[2κ(x+ c(y)t)] for y < 0. Note the solution is discontinuous in term of
y, although each realization of y is a smooth function in x.

The numerical solutions are solved with σ = 0.5 and κ = 1. The numerical boundary
conditions are implemented via the eigenvalue analysis (101). For numerical solu-
tions of gPC order N , we examine three error measures: error in mean emean(N, t) =
maxx |E(v) − E(ue)|, error in standard deviation (STD) estd(N, t) = maxx |σv −
σue

|, and the mean-square error e2(N, t) = maxx(E[(v − ue)
2])1/2. Numerical sim-

ulations are conducted up to t = 1, and we define convergence rate as r(N) =
[ln(e(N)) − ln(e(M))] / [ln(N) − ln(M)] for expansion orders N > M ≥ 1, where e is
one of the three error measures.

Figure 27 shows the convergence of the three errors with increasing order of Legendre
expansions. In this case, we observe different convergence properties between even and
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odd orders of expansions, although they appear to have similar asymptotic conver-
gence rate. Note that such different error behaviors between even and odd expansions
can be seen in classical spectral methods, cf. [14]. The errors, along with their con-
vergence rates, are tabulated in Table XI and Table XII, for odd and even orders of
expansions, respectively. No exponential convergence is achieved, as opposed to that
in the earlier examples. Also, the weak error measures (error in mean and error in
STD) converge more rapidly than the strong error measure in term of mean-square.
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Error in STD − Even
L2 error − Odd
L2 error − Even

Fig. 27. Errors for odd and even orders of Legendre-chaos expansions.

The slower convergence is due to the discontinuity in random space, and is manifested
in Fig. 28, where the numerical solution v(x, t, y) is shown at location x = 0.454 with
N = 21 order of expansion. Fig. 28(a) shows the approximation at t = 0, i.e., the
initial condition, and Fig. 28(b) shows the numerical solution at t = 1. The Gibbs’
oscillations around the discontinuity at y = 0 are clearly visible.

14 Summary

The properties of (generalized) Polynomial Chaos method for uncertainty analysis of
hyperbolic equations are studied. We show, via a simple model problem of a scalar
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Table XI
Errors for odd-order Legendre-chaos expansions and their convergence rate.

N emean rmean estd rstd e2 r2

1 0.1761 – 0.4460 – 0.7044 –

3 3.137(-2) 1.57 0.1747 0.85 0.4147 0.48

5 1.241(-2) 1.82 7.300(-2) 1.71 0.2965 0.66

9 4.470(-3) 1.74 4.095(-2) 0.98 0.2202 0.51

15 1.758(-3) 1.83 2.553(-2) 0.92 0.1713 0.49

21 9.188(-4) 1.93 1.815(-2) 1.01 0.1438 0.52

23 7.680(-4) 1.97 1.644(-2) 1.08 0.1368 0.55

25 6.503(-4) 2.00 1.498(-2) 1.12 0.1305 0.56

27 5.564(-4) 2.03 1.370(-2) 1.16 0.1248 0.58

29 4.803(-4) 2.06 1.257(-2) 1.20 0.1195 0.60

Table XII
Errors for even-order Legendre-chaos expansions and their convergence rate.

N emean rmean estd rstd e2 r2

2 0.1589 – 0.4791 – 0.6457 –

4 3.841(-2) 2.05 0.1985 1.27 0.4065 0.67

6 1.803(-2) 1.87 0.1215 1.21 0.3030 0.72

10 7.503(-3) 1.72 5.588(-2) 1.52 0.2249 0.58

16 3.295(-3) 1.75 3.042(-2) 1.29 0.1741 0.54

22 1.843(-3) 1.82 2.058(-2) 1.23 0.1457 0.56

24 1.577(-3) 1.79 1.846(-2) 1.25 0.1386 0.58

26 1.370(-3) 1.76 1.668(-2) 1.27 0.1321 0.59

28 1.204(-3) 1.74 1.516(-2) 1.29 0.1263 0.61

wave equation with random wave speed, some prominent features of the resulting de-
terministic system of equations obtained by a Galerkin projection in random space.
We proved the existence of both positive and negative eigenvalues when the wave
speed changes sign in random space and presented a consistent and stable method
for imposing boundary conditions for the deterministic equations. The gPC Galerkin
method, with the proper boundary treatment, is shown to be convergent. Further-
more, the error contains a linear growth in time which is independent of the bound-
ary conditions. We remark that although the linear wave equation considered here
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Fig. 28. Numerical approximations of uN (x, t, y) at x = 0.454 with N = 21. (a) t = 0; (b)
t = 1.

is rather simple, it possesses one of the key issues in applying gPC Galerkin method
to hyperbolic problems – the proper way to enforce boundary conditions when the
characteristic wave changes directions in random space. This issue is addressed here
and it opens up the possibility of applying gPC Galerkin method to other hyperbolic
problems with uncertainty, e.g., nonlinear wave equations, Maxwell equations, etc.
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